


COMPUTER GRAPHICS & VISUALIZATION
(18CS62)

TEXT BOOKS

1. DONALD HEARN AND PAULINE BAKER: Computer
Graphics—Open GL 3rd /4t Edition, Pearson Education,
2004/

DWARD ANGEL.: Interactive Computer Graphics Atop
down approach with OpenGL 5t edition Pearson
ducation 2008.



Module-1 Overview

odule we discuss about :

Basics of computer graphics

pplication

isplay Devices: Random Scan and Raster Scan displays,
aster-scan systems

put devices,

raphics/software- OpenGL

drawing algorithms(DDA, Bresenham'’s),
e generation algorithms (Bresenham'’s).



What is Computer Graphics

'Creation, Manipulation, and Storage of
geometric objects (modelling) and their
images (rendering).

Digplay those images on screens or
tput/display devices.



What is Computer Graphics

[ Computer Graphics refers to the tools
used to create Pictures

IThe hardware tools include
ideo monitors

Graphics cards

[ Printer

[Input devices (mouse, data glove &
trackball)




What is Computer Graphics

[ The Software tools are
| Operating System

| Editor

] Complier

ebugger

Along with these graphics routines are
required to create a picture

eg. Graphics Libraries




Applications of Computer Graphics

Graphs and Charts.
Entertainment
Computer Aided Design
Virtual reality environment.
ducation and Training
Computer Animation
. Data Visualization
. Image processing
9. Graphical user interface

ok WpMNH




2.Presentation Graphics

® Used to produce illustrations for reports or
generate slides for use with projectors

® Commonly used to summarize financial,
statistical, mathematical, scientific, economic
data for research reports, managerial reports &
customer information bulletins

® Examples : Bar charts, line graphs, pie charts,
surface graphs, time chart



Examples of presentation graphics

Standard Bar Chart Standard Line Chart
30 Bananas 29 Gucumners: .
- e, 100 1

80 -

40

20




" S
Examples of presentation graphics

Intersected Surfaces
Standard Pie Chart I Cars 2069 % /

B Arpiangs 15,52 %
T 2759% |




— 3.Computer Art

® Used in fine art & commercial art

“Includes artist’s paintbrush programs, paint
packages, CAD packages and animation
packages

"I These packages provides facilities for
designing object shapes & specifying object
motions.

“Examples : Cartoon drawing, paintings,
product advertisements, logo design






Computer Art

® Electronic painting
I Picture painted electronically on
a graphics tablet (digitizer) using a stylus
I Cordless, pressure sensitive stylus

® Morphing

I A graphics method in which one object is
transformed into another




Video games

Rank 1/5
Spread: +3




Games are very important in
Computer Graphics




puter Aided Design too




| 0]

— @.-."-‘-




i InteliCAD 98
e Edl Yew |nsed Modify Seftings Jook Window Help

REE AY I DBRS oo X | T o WLl | GC W | ~—H S N = QAN BE

SRS R | G028 - D@ oD | 8 ZAS

3 v
)
FEEP@ 2a F& ®

D W

X
.

b

22 Intl_Space_Station_dec98.dwg

1 % B.&8

o[

FULLRENDER ﬁ

ady S63851.6529.00000 (0 |BYLAYER BYLAYER ! TILE

A



Hight simulator Virtual reality




Education and Training

raphical flight simulator has proved to increase the
safety and to reduce training expenses.

[ The field of virtual reality hasopened many new paths.
for ex.
Steréoscopic vision.

Surgical training.
stronauts trained in weight less environment.

Video games use standard computer and specialized
rdware boxes.



" ol AR
Training




Computer Graphics isabout
animation (films)

$l‘

Do o A

e ~UEE




dical Imaging isanother driving force




entific Visualisation

12 above our Viserl range

Thaxutnd EioglopiavCrmp
Tlu'-l?l?!"l\i y

wraiid gy


http://www.nasm.edu/NASMDOCS/PA/CV/

P Glasses

Py,
’

P 3D Displa
O’:“.!J II-IEH 4

N\

|

3D Object




ounted Displays
(HMDs)
The display and a position

tracker are attached to the
user’'s head

acks the user’'s head relative
the display.




phical User interfaces

'Advances in computer graphics made different
types of interfaces.

User can interact with the computer using
windows icons, menus & pointing devices.



Operating system provides user interface

B Yohoo! - Miotoxoll Intomnot L xploco
Fﬂl View  Favertws Tool ) NN Indsraitive - Miciosoft nfemet Explove
- @ [ | Lo Edt View Favortes  Loole  Help
frorn Slop R ‘ “ . = D L,:j g iﬂ «
t://www. pahoo. com/ el [l Stop  Mefrech  Home | Search Favortes  History

Fle Edil View Help
' M hamper

e - l L [ 3% Floppy (A)

=17 ke ()

Mal o )
5 (E:)
=) Removable Digk (F1)
e HOP@CNN R Computer Graphics st Stantord Univiisity « Micieaoll Tntes) (=2 comman on Tulefiag' (5]

/ : e hurnper on ‘gib' (W)
\hats b Browse by (| Eile Edit  Miew F@Vﬂl“ﬂ Toole Lelp 152 humper on 'mipmap’ (4)

Yahoo! Pag l L 215 | & 1542 kekoa on 'Lilerp! (1)
instant messa, flack (oriprd Stop  Malesh  Mome | Search [ [=525 on ‘el ()

: 122 Control Panel
] Addrmse IB hitp: A2graphics/ Gl Printers

Wdd Prinfar
backface on shutter
loyd on shutter
pamut on shutter

- e

r LN L, )

MW o imudaleeiven - Miciosolt Visuel Ces o [ NmutalNsro\snever\plpae. ¢
Shopping - Yelld i || e Edt View Inett Project Buld Lools Futy Guentiy Window ol
Eanail - Calonide | yype || (3 | i Ll | v o (o0 e [ ) R | Gl [NUM_PROJECTORS _:_[|‘:,.|“p 1ol el

W Migtonolt Woid - Dooumontl
(¥ Ele Edit View Insert Fgimat Tools Table Window belp =8 3] | = - H|«‘ RiE A |
(R = N e A = A e )
“Nnrmnl = Times New Roman = 10 -| B 7 U HE w : glFanawh()
[EJlaEdIt!Jewﬁojlu.g-v-!v-‘e-r-!v-‘;f.,.!,.‘?.' '
(- | @ | >y % Matoh 9, 1999 =
Oulook Shonouts | 17 gl o ' For IR1XG4
My Shortcuts

47 Drafte

— § boid muralServerPipeDunp( MuralPipe pipe. MurallUf sdata ) ﬁ‘sﬁ' for pipe.o
i 3

Doar IT Deparimont Pipe-rnun_projectors L)

I'm manning out of soreen spacel int %, y

45t 453

et e Len more monitors of 17 m likely Lo kil my officemate HuralProjector *proi = pipe-sprojectors + i)
MuralPPM temp.

b Y T — mﬂ
g ) [Layers AL Pathe ™|
A Prustrated Uger 11 (mural_server orientation) 3
{ & muzic (e = onbeity | V] %

muralWarning( MURAL_WARN_C File Lot View Melp 1™ 1w va TranKArencs

return
¥ (N muzie -
- E-J—J—‘—J-J' s » % proj-sx_ul % I_’ Heh bl ‘i
Phae 1 Sme 1 WA 7, 2 ol 4% (117 v pPipm—svert _mxtent — prog-sj]Asosmith I Lmdd 2oy
o I"l ; ‘ = s T temp v = nural_server proi_hor 179 Alani Morisette (1 Les Miy
A R banp, bRl merver:praiL. ) Alice In Chaine J Live
Paul 1, Mart| o *,
m:v'\lplm\Sl :;,I.'rl:: stanford, EoL » Only read the upper left oojadAwesome 80's ) Madon ;
Frencols GUmbretiors s J temp.w —= proj-rright 1 Billy Jonl L1 Motalica (222 The Rolling Stores
Matt Pl :-..:: m_____JF“'Vl‘W SRR s BEO =2 DOREON |1 Concrete Blonde [ new (2 The Simpoons
mmp@Graphics. Stanford,EBU Hudy T ) Depeche Mode ) Mine Inch Nalls L) The Who
M " ¢ . ) Fiona Apple (I Nirvana (1 Thay Might B Giants
i e EREE ARSI |1 Groane 2 Pearl Jam [ Tao Much Joy
Francols Guimbretiere - ~ b yory v adbas,
-l |l House Of Faln L Pink Flayd L Tor Amos
gurth@pgraphics. stanford, edu
gerth@graphics, stanford, edu ERE SRS ’ ~ -:"Ui; i :_‘ nm S He
Paul 1, Martino 1 Jowe —1
Paul 1, Martino

& [uthon

@, Gt (e

—
L 0 Y 8 09 Y Rl e |

P

DED

EED

CER

|38 object(s) [Wam . Jine 3
>hesaurf L) L o e

I while trying to geot an || mnmmm E TJ“D;'ITﬂm
Mi | AL | 2 |[eem- Lo

rm{.q 3ex | didce. | Waco. | date. | 0] 3¢ mdul LalPi | 47 I.EJE’_J s | Eha | ema | ymu |



Window system and large-screen interaction




Graphics System

—— 3 i - 7 i vwl{ “ |) |“‘( “‘ \:‘: ‘
f—/ \ N Processor H Graphics : Frame I .
AN (CPU) | processor buffer il AL

— - — - - ) -

= RSy S—— n o |‘ 4 )
= ——
= [
\/-"—\.
J

) —>— CPU | GPU
Memory Memory

Input devices - Output device

Image formed in frame buffer



Components of Graphics
System

Input devices
Framebuffer & Memory
Processor

W NFH

Output devices




Input devices

[ Locator Devices
[ Keyboard

| Scanner

I Imeges




scanner

Data glove

Locator devices/pointing devices



Processor

U —both normal operation and Graphical
ration.

GPU --Graphical Processing Unit, a special purpose
processor, which use Graphical Primitives (line, circle,
polygon) generated by application programs and
assign values to the pixels in the frame buffer that
represent these entities.

For e /'/amp/e, triangle is represented by 3 vertices and
line/segments connecting these vertices.

All Graphic system are raster based.

The conversion of geometric entities to pixel colours
nd locations in the frame buffer is known as
Rastenization or Scan Conversion "



Output devices: 2 types

IGraphic output without display

- [Printers, Plotters.....

—

Graphic output with display
[ Cathode Ray Tubes
[ Vector (Random)scan Display

[Raster scan Display

Flat panel display
[Plasma panel
1 LCD
1LED



Cathode-ray tube (CRT) Monitors

Primary output device —Video monitors

>

Standard design of video monitor:
Cathode-ray tube (CRT)



A cathode ray tube

Horizontal deflection plate

Metal cathode cylinder Interior metallic coating
With high +ve voltage 6f 15000-20000volts

\

Magnetic
_ Deflection Coils Phosphor-
Focusing Coated
System Screen

Electron
‘

\ Beam
Emitting —ve voltage

Connector Electron
Pins Gun .
Control Grid

Figure 2-2 Interior metallic coating

. . . . N With high +ve voltage
Basic design of a magnetic-deflection CRY, 9 9

Vertical deflection plate




Electron gun

Focus

x deflect

Phosphor




Beam of electrons hit phosphor-coated screen, light emitted by
phosphor.

rection of the beam is controlled by two pairs of deflection
plates.

',11e output of the computer is converted by DAC, to voltages across
the X and Y deflection plates.

!.lght appears on the surface of CRT when sufficient beam of electrons
d at phosphor.

il emit the light for a few milliseconds, in order to get a
teady flicker free image same path must be retraced at high
te in order to keep phosphor activated.

The frequency at which a picture is redrawn on the screen is
referred to as the “refresh rate” in current display operate at a
p to 50-85 HZ



Frame aspect ratio (FAR) =horizontal/vertical size
1A% 4:3
HDTV 16:9

| Page 8.5:11 ~3/4

Pixel Aspect Ratio Pixel Aspect Ratio
PAR=x/y=1:1 PAR=xy =21
X = pixel width X = pixel width
y = pixel height y = pixel height




.'//

- RANDOM SCAN DISPLAYS
~*AND
RASTER SCAN DISPLAYS




[ Refreshing techniques:

i Raster scan display
1 , Random scan display




Raster: A raster scan, or raster scanning, 1s the
rectangular pattern of image capture in
television.

It’s a rectangular array of points or dot.
The word raster comes from the Latin
word rastrum (a rake).

An 1image 1s subdivided into a sequence of strips
known as “scan lines” which can be further
divided into discrete pixels for processing in a
computer system.




WORKING

e In a raster scan system, the electron beam 1s swept
across the screen, one row at a time from top to
bottom.

e As the electron beam moves across each row, the
beam intensity 1s turned on and off to create a
pattern of 1lluminated spots.

e The return to the left of the screen, after refreshing
each scan line 1s called Horizontal retrace.

e At the end of each frame the electron beam returns
to the top left corner of the screen to begin the
next frame is called Vertical retrace:



Raster Scan Display

Electron gun
& Connecton

\-

- Control clectrode
" Focumny electrode

1 Honzontal deflecton plates
" Vertical deflection plates

._\~




WORKING

+ Picture definition is stored in a memory

area called the refresh buffer or frame
buffer.

- Refresh buffer or frame buffer is
memory area that holds the set of
intensity values for all the screen points.

- Stored intensity values then retrieved from
refresh buffer and “painted” on the screen
one row (scan line) at a time.



Object as set of discrete points across each scan line



The quality of a raster image 1s determined by the
total number pixels (resolution), and the amount
of information in each pixel (color depth)

A black-and-white system: each screen point 18
either on or off, so only one bit per pixel is needed
to control the intensity of screen positions. Such
type of frame buffer is called Bit map

High quality raster graphics system have 24 bits
per pixel in the frame buffer (a full color system
or a true color system)

Refreshing on raster scan displays is carried  out
at the rate 60 to 80 frame per second.



HISTORY:

The use of raster scanning in television was proposed in 1880 by French
engineer Maurice Leblanc,

The term raster was used for a halftone printing screen pattern as early as 1894.

The first use of raster specifically for a television scanning pattern is often
credited to Baron Manfred von Ardenne who wrote in 1933.

in January 1930 it was proven by demonstrations that the Braun tube was
prototyped in the laboratory with point sharpness and point brightness for the
production of a precise, bright raster.

In analog TV, originally it was too costly to create a simple sequential raster
scan of the type just described with a fast-enough refresh rate and sufficient
horizontal resolution, although the French 819-line system had better definition
than other standards of its time.




Architecture of Raster System

System bus

1 1O Device

Fig. Architecture of a raster system with a fixed positon of
the system memory requred for the frame buffer




FRAME BUFFER

* The image is stored in a frame buffer containing the total
screen area and each memory locations corresponds to
pixel.

* Frame buffer also contains the colour for each pixel.

* Examples- Television panels ,printer (99% of raster scan )




VIDEO CONTROLLER

* It 1s used to scan each and every line of the
refresh or buffer memory

* The lines are scanned from left to right and when
line 1s finishes ,it get to the next line and so on ..

* It has the direct access to refresh buffer to
retrieve all the coordinates corresponding to each
pixels.

* Two registers are used to represent the
coordinates .




aster Scan

graphics system takes pixel from the frame
buffer and display them as a points on the display
" in two different ways.

1. Non interlaced/Progressive displays

The pixels are displayed
row by row or scan-line
by sca "‘iline, at the refresh <
2. Interlaced display :
Odd rows and even rows are
reshed alternately. Ris used in ‘ ‘
mmercial television. '

an frame 30 times per second

Figure 2-7

A raster-scan system displays an object as a set of discrete points across each scan line.



Interlacing

* On some raster systems(TV), each frame is displays in
two parsing using an interlaced refresh procedure.

* Interlacing i1s primarily used for slower refresh rates.

* An effective technique to avoid Flicker. (Flicker occurs
on CRTs when they are driven at a low refresh rate,
allowing the brightness to drop for time intervals
sufficiently long to be noticed by a human eye).




[nferfaced Sean

Progresive Scan

D e X SO T B T B e

—
—l

Interlaced

| E— - wowa —
‘-“’_‘1 ‘__"'n“- W e T
5 - -
_ = s BN : =
g - _
T R————————— 5
S B |
O O
 — Wy
e Seam
e
Odd lines Even lines
Field 1 Field 2

Field 1 + Field 2 = Frame (complete image)
Display Rate: 60 fields per second (North America)



INTERLACING




Interlacing

Figure 1: An Example of Interlaced Display

LL R Ll

:i

2

~ -8

Interlaced Scan

Even Lines

Odd Lines




Raster Image

The quality of raster image 1s determined
by total number pixels (resolution), and the
amount of information in each pixel (color
depth).




Raster Image




ADVANTAGES

Raster scan 1s a technology which 1s
very much efticient.

It requires little memory.

This technology i1s less costlier.




Disadvantage

To increase size of a raster image the pixels defining the image are be increased
in either number or size spreading the pixels over the large area causes the
image to lose detail and clanty.

= Produces jagged line that are plotted as discrete points

Allased

Anti-Aliased




Pros and Cons

antages to Raster Displays
llowercost
[filed regions/shaded images

Disadvantages to Raster Displays

I a discrete representation, continuous primitives must
be’ scan-converted (i.e, fill in the appropriate scan
lines)

l/Aliasing or "jaggies" Arises due to sampling error
when converting from a continuous to a discrete
representation



APPLICATIONS

=

Suited for realistic display of screens

Home television computer printers create their
images basically by raster scanning. Laser
printers use a spinning polygonal mirror (or an
optical equivalent) to scan across the
photosensitive drum, and paper movement
provides the other scan axis

Common raster image formats include BMP
(Windows Bitmap), JPEG (Joint Photographics Expert
Group), GIF (Graphics Interchange Format) , PNG
(Portable Network Graphic), PSD (Adobe PhotoShop)



RANDOM SCAN DISPLAY

— e Random scan display 1s the use of
| geometrical primitives such as
points, lines, curves, and polygons, which
are all based upon mathematical

._\




VECTOR IMAGE




Random Scan/ Calligraphic/ Vector CRT

an be moved from any position to any other position, by
tuming beam on and off.

\(Iery expensive but very fast because no scan conversion.

7

SCreen




WORKING

» When operated as a random-scan
display unit, a CRT has the electron
beam directed only to the parts of the
screen where a picture is to be drawn.

e Random-scan monitors draw a
picture one line at a time and for this
reason are also referred to as vector
displays (or stroke-writing or
calligraphic displays).



Refresh rate depends on the number of
lines to be displayed.

Picture definition 1s now stored as a line-
drawing commands an area of memory
referred to as refresh display file (display
list).

To display a picture, the system cycle
through the set of commands in the display
file, drawing each component line in turn.

Random scan displays are designed to
draw all the component lines of a picture 30
to 60 times each second



» A Raster system produces jagged lines that are plotted as
discrete points sets.

3 ; | o v _V_J A=
i Raster’
- b
i ot | !
Qutline primitives. . Filled primitives

» Vector displays product smooth line drawing

7 7

Ideal Drawing___\. Vector Drawing

e b ~ ‘}
g . . e .
o~ — .
e ~— g‘ / S
-

',—/ \\ ‘\ -‘{/_ h_.w. ,
— ‘\—-,-4'0’
A
Y
.-

Ideal Drawing Vector Drawing



 Random scan displays are designed for
line-drawing applications and can not
display realistic shaded scenes

4




Advantages

Random scan displays have higher
resolution than raster systems.

Vector displays product smooth line
drawing.

This minimal amount of information
translates to a much smaller file size. (file
size compared to large raster images)

On zooming 1n, and 1t remains smooth

The parameters of obje.cts are stored and
can be later moditied.



Color CRT Monitors

® Using a combination of phosphors that emit
different-colored light

® Beam-penetration
- Used in random-scan monitors
- Use red and green phosphors layers

/Color depends on the penetrated length of
electrons

Shadow mask
- Used in raster-scan systems

- Produce wide range of color with RGB color
model




.Beam Penetration Method:
eam-Penetration method has been used with
-scan monitors.

In this method, the CRT screen is coated with two layers of
phosphor, red and green and the displayed color depends
on how far the electron beam penetrates the phosphor
layers.

his metﬁhOd produces four colors only, red, green, orange
nd yellow.

Al\beam of slow electrons excites the outer red layer only;
h@&nce screen shows red color only.

A beam of high-speed electrons excites the inner green
layer Thus screen shows a green color.



Red Phospher
Coating

\ Green Phospher
\ Coating

Only fourcolors are possible
ality of pictures is not as good as with another




Shadow-Mask Method:

dow Mask Method is commonly used in Raster-Scan
System because they produce a much wider range of
cOlours than the beam-penetration method.

.| Itisused in the majority of color TV sets and monitors.

Construction: A shadow mask CRT has 3 phosphor color
dotsat each pixel position.

e phosphor dot emits: red light
other emits: green light
ird emits: blue light



This type of CRT has 3 electron guns, one for eac
and a shadow mask grid just behind the ph
ed screen.

Shadow mask grid is pierced with small round holes in a
- triangular pattern.

Figure shows the delta-delta shadow mask method
commonly used in color CRT system.

\

Green Gun

Blue S

Screen with
RGB phosphor dots



OO0O0O
00O
OO0O0O

Shadow mask

kL
f Green phosphor
Screen
| Red phosphor
Blue phosphor

The Shadow mask CRT




Working:
Triad arrangement of red, green, and blue guns.
deflection system of the CRT operates on all 3
electron beams simultaneously; the 3 electron beams
are deflected and focused as a group onto the shadow
mask, which contains a sequence of holes aligned with
the phosphor-dot patterns.

When_.«-'the three beams pass through a hole in the
shadow mask, they activate a dotted triangle, which
rs as a small color spot on the screen.

he phosphor dots in the triangles are organized so that
ach electron beam <can activate only its
rresponding color dot when it passes through the
dow mask.



Ine arrangement:

Another configuration for the 3 electron gunsisan Inline
arrangement in which the 3 electron guns and the
corresponding red-green-blue color dots on the screen,

' are aligned along one scan line rather of in a triangular
pattern.

This jinline arrangement of electron guns in easier to

keep in alignment and is commonly used in high-
resolution color CRT's.




Triad In-Line

Fig:Triad-and -in-line arrangements of red, green and blue electron guns
\\ of CRT for color monitors.




Advantage:
1.Realistic image

2.Million different colorsto be generated
| 3.Shadow scenes are possible

Disadvantage:

1.Relatively poor resolution
.Convergence Problem
3.Relatively expensive compared with the
monochrome CRT.




Flat Panel Display:

-Panel display refers to a class of video devices that
have reduced volume, weight and power requirement
compare to CRT.

)}

Example: Small T.\. monitor, calculator, pocket video
ames, laptop computers, an advertisement board in

levator.
Flat Panel Display

\J \/
Emissive Display Non-Emissive Display
(Example are Plasma (Example are LCD)

Panels and LED)




missive Display: The emissive displays are devices that
convert electrical energy into light. Examples are
- Plasma Panel, thin film electroluminescent display and
' LED (Light Emitting Diodes).

). Non<Emissive Display: The Non-Emissive displays use
yptical effects to convert sunlight or light from some other
urce into graphics patterns. Examples are LCD (Liquid
tal Device).




FIGURE 1.5 Generic flat-panel display.

Vertical grid

Light-emitting elements

 EE N NN NN NE NN NN N

I NN RN NN RN NN NN

 FE NN RN N NN NN NN N

A N N NN NN NN NN NN

000000 OOEOOOOODS

Horizontal grid — AR R TR
XX NN NN N

NENNENNN]

A E NN N NN

XN NN N NN

KRR NN NN

Copyright @ 2006 Pearson Addison-YWesley. All rights reserved.

1-5



LED (Light Emitting Diode):

D, a matrix of diodes is organized to form the pixel
positions in the display and picture definition is stored in a
refresh buffer. Data is read from the refresh buffer and
converted to voltage levelsthat are applied to the diodes
to produce the light pattern in the display.

|

CD (Liquid Crystal Display):

iquid Crystal Displays are the devices that produce a
icture by passing polarized light from the surroundings or
from/ an internal light source through a liquid-crystal
aterial that transmits the light.

id crystal display is temperature dependent. It is
een zero to seventy degree Celsius. It is flat and
redquires very little power to operate.



LCD uses the liquid-crystal material between two glass
ach plate isthe right angle to each other between
plates liquid isfilled.

One glass plate consists of rows of conductors arranged in

vertical direction.
‘

nother glass plate is consisting of a row of conductors
rranged in horizontal direction.

ixel position is determined by the intersection of the
vertical & horizontal conductor. This position is an active
part of the screen.



crystal display is temperature dependent. It is
en zero to seventy degree Celsius. It is flat and
requires very little power to operate.

dvantage:
Low power consumption.
Small Sze
. Low Cost

iIsadvantage:
LCDs are temperature-dependent (0-70°C)
Ds do not emit light; as a result, the image has
little co ntrast.
LCDs have no color capability.
The resolution isnot as good as that of a CRT.



Types of Frame buffer
lor buffer

They contain either color-index or RGB color data and may also
contain alpha values.

[ Depth buffer

Stores a depth value for each pixel, mainly used for hidden surface
removal, depth isusually measured in terms of distance to the eye,

so pixels with larger depth-buffer values are overwritten by pixels with
smaller values.

[ Stencil Buffer

One yse for the stencil buffer is to restrict drawing to certain portions
of thie screen.

ccumulation Buffer

accumulation buffer holds RGBA color data justlike the color
ffers do in RGBA mode Itstypically used for accumulating a series
offimages into a final, composite image.




Raster Scan System




Organization of a simple raster system is shown

Ure.
N

System Video o
S Memory Controller Monitor
System Bus

|

[/0 Devices




Here, the frame buffer can be anywhere In the system
memory, and the video controller accesses the frame
buffer to refresh the screen..

In addition to the video controller, raster systems
employ other processors as coprocessors and
accelerators to Implement various graphics

operations.




The figure below shows a commonly used organization for raster
systems.
area of the system memory is reserved for the frame buffer,
and the video controller is given direct access to the frame-buffer
memory.

Frame-buffer locations, and the corresponding screen positions, are
referenced in the Cartesian coordinates.

Video .
Ced Controller Monitor
! ! !
Y

System Bus

|

[/O Devices



Cartesian reference frame:

e-buffer locations and the corresponding screen
positions, are referenced in Cartesian coordinates.

v'In an application (user) program, we use the commands
\{Nithin a graphics software package to set coordinate
ositions for displayed objects relative to the origin.

/ The/coordinate origin Is referenced at the lower-left corner
a screen display area by the software commands, although
an typically set the origin at any convenient location for
rticular application.



Working:  Figure shows a two-dimensional Cartesian

The screen surface IS t

Increasing from left to

ce frame with the origin at the lowerleft screen corner.

=
y o
’A ‘ 4
2 L
N
i oy
L
N
.-
o
A
4
W

nen represented as the first quadrant of

two-dimensional system with positive x and y values

right and bottom of the screen to the



Basic Video Controller Refresh Operations

sic refresh operations of the video controller are diagrammed

Horizontal and
Vertical Deflection
Voltages

Raster-Scan
Generator

¥y
Register Register

Memory Address Re gi:t-l‘cr I— Intensity

T

Frame Buffer I




Two registers are used to store the coordinate values for the
Ixels.

Initially, the x register Is set to 0 and the y register Is set to

the value for the top scan line.

|
‘

/The contents of the frame buffer at this pixel position are
hen retrieved and used to set the intensity of the CRT beam.

y

—t

Then the x register Is incremented by 1, and the process Is
ated for the next pixel on the top scan line.

IS procedure continues for each pixel along the top scan



the last pixel on the top scan line has been processed,
egister Is reset to 0 and the y register Is set to the value
for the next scan line down from the top of the screen.

Ir
0
/ The procedure is repeated for each successive scan line.

cycling through all pixels along the bottom scan line,
iIdeo controller resets the registers to the first pixel
ition on the top scan line and the refresh process starts



a. Speed up pixel position processing of video controller:

v'Since the screen must be refreshed at a rate of at least 60
frames per second, the simple procedure illustrated in above
fJigure may not be accommodated by RAM chips if the cycle
time is too slow.

To speed up pixel processing, video controllers can retrieve
ultiple pixel values from the refresh buffer on each pass.

v'When group of pixels has been processed, the next block
el values is retrieved from the frame buffer.



Advantages of video controller:
ildeo controller can be designed to perform a number of
erations.

v'For various applications, the video controller can retrieve
pixel values from different memory areas on different refresh
cycles.

‘This provides a fast mechanism for generating real-time
himatjons.

other video-controller task iIs the transformation of
s of pixels, so that screen areas can be enlarged,



Ition, the video controller often contains a lookup table,

Ixel values In the frame buffer are used to access the

lookup table. This provides a fast method for changing screen
Intensity values.

1nally, s'me systems are designed to allow the video
ontrol er to mix the framebuffer image with an input image
friom a television camera or other input device .




Raster Graphic system with Display processor

g;sil:z(;r Frame Video
i Buffer Controller
Memory
CPU Display System
Processor Memory
System Bus

I

I/O Device



Raster-Scan Display Processor

re shows one way to organize the components of a
raster system that contains a separate display processor,
sometimes referred to as a graphics controller or a display
COProcessor.

he purpose of the display processor is to free the CPU
rom thé graphics chores.

addition to the system memory, a separate display-
essor memory area can be provided.



Scan conversion:

jor task of the display processor is digitizing a picture
lon given In an application program into a set of pixel
values for storage in the frame buffer.

v," This digitization process Is called scan conversion.
xample 1: displaying a line
Graphics commands specifying straight lines and other

eometric objects are scan converted into a set of discrete
Intg, corresponding to screen pixel positions.

=> Scan converting a straight-line segment.



Example 2: displaying a character

racters can be defined with rectangular pixel grids .

->The array size for character grids can vary from about 5
by 7 to 9 by 12 or more for higher-quality displays.

A character grid Is displayed by superimposing the
ctangular grid pattern into the frame buffer at a specified
Inate position.

Foar
[
Foar
[
Foar
el
Far
ko
Foar

di

"F'
e odi
Far
e Jh.




Using outline:

characters that are defined as outlines, the shapes are
scan-converted into the frame buffer by locating the pixel
positions closest to the outline.




Additional operations of Display processors:

ay processors are also designed to perform a number
of additional operations.

These functions include generating various line styles
ashed, dotted, or solid), displaying color areas, and applying
ansformations to the objects in a scene.

Isplay processors are typically designed to interface with
active Input devices, such as a mouse.



Graphics workstations and viewing systems

ost graphics monitors today operate as raster-scan
displays, and both CRT and flat panel systems are iIn
¢common use.

Graphics workstation range from small general-purpose
omputer systems to multi monitor facilities, often with ultra
large yiewing screens.

Igh-definition graphics systems, with resolutions up to
2560 by 2048, are commonly used in medical imaging, air-
Ic control, simulation, and CAD.



Graphics workstations and viewing systems

any high-end graphics workstations also include large
viewing screens, often with specialized features.

Multi-panel display screens are used in a variety of
pplications that require “wall-sized” viewing areas. These
ystems are designed for presenting graphics displays at
eeting"s, conferences, conventions, trade shows, retall

multi-panel display can be used to show a large view of
Ingle scene or several individual images. Each panel in the
system displays one section of the overall picture .



Graphics workstations and viewing systems

arge, curved-screen system can be useful for viewing
by a group of people studying a particular graphics

application.
l

/A 360/ degree paneled viewing system in the NASA
ontroltower simulator, which is used for training and for
testing ways to solve air-traffic and runway problems at

y




Rasterization

erization (scan conversion)

1 Scan conversion is combination of
rasterization and generating the picture in the
scanline order.

[ Rasterization is a process of determining
which pixels provide the best approximation
tg a desired line on the screen. The general

equirements of lines are

IStart and End should be accurate .

JAIl  pixels should have constant brightness
along theirlength.




Scan Conversion of Line
Segments

One pixel




LINE EQUATION

If the end points of line segments are (x1,yl) and
(x2,y2), the line can be represented as

Y=mX+c
Where m slope IS
m= 02D _
(x2 x1) Ax

) given X interval Ax along a line, calculate
corresponding Ay

Ay=m *Ax, forslope |m| <1

imilarly for a given y interval Ay along a line,
orresponding Ax

X =Ay/m forslope |m| >1

,assume0<m<1




Scan Conversion algorithm
for Line segment

| Algorithms are
| 1. DDA (Digital Differential Analyzer)
| 2. Bresenham's Algorithm

I DDA was a electro mechanical
device for digital smulation of
differential equations.

dy

_=m
dx '

Where' m' isthe slope.



n Conversion of Line Segments

' [ Start with line segment in window
coordinates with integer values for
endpoints

| Assume implementation has a
write pixel function




DDA Algorithm

[ Slope | m|< 1or | m| =0(horizontal line),
Ay=m AX,
moving from x1 to X2 and xisincrease by
1 for each iteration. And y isincrease by

AY =m.
For (x=x1, x<=x2, x++)

y += m;
/note:m is float number
write pixel (x,round(y),line color);




Using Symmetry

[Useforl1>m=>0
[IForm >1,swap roleof xandy
1 For each y, plot closest x

f




DDA Algorithm

] Slope |m|>1
Ax=Ay/m,
moving from yl to y2 and y isincrease by
1 for each iteration. And X isincrease by

Ax =1/m.
For (y=yl; y<=y2, y++)

X += 1/m;
//note:m is float number
write pixel (round(x),y,line color);

}




When X1 >X2or Y1 >Y2

~e.




DDA Algorithm

1 Slope lessthan or equal to -1 ( negative )

Ay=m Ax moving from x2 to x1 and xis
decrease by 1 for each iteration. And y is
decrease by Ay =m.

For (x=x2, x<=x1, x--)

y += m;
/note:m is float number
write pixel (x,round(y),line color);




DDA Algorithm

[ Slope m >-1
Ax= Ay/m , where y1>y2

moving from y2 to yl and yisdecrease
by 1 for each iteration. And xisdecrease
by Ax=1/m.

For (y=y2; y<=yl, y--)

{

X += 1/m;
//note:m is float number
write pixel (round(x),y,line color);

}




Advantages

[ Easy to implement, simple & faster method
compared to direct use of Equation.

[ Does not involve any floating point
multiplication and no direct use of intercept.

advantages

Involves floating point addition.(round off
ror)

me consuming technique.



Rasterization




Rasterization

-The raster display is a matrix of picture elements also
called pixels. Each pixel has a color value assigned.

-"A frame buffer stores the values for each pixel.
{The task of displaying a world modelled using primitives

ke lines, polygons, filled/patterned areas, etc. can be
carried out in two steps

erization Is a process of determining which pixels
Ide the best approximation to a desired line on the



3D Apphcation GPU

Shaders
DA Opall | GO oo

of DuectiD \/\/'

Vertex
: processor
(PU '

ve
-

| Primutrve assembly /\/\'(J
rogrammable ]
PU Pipeline | e MU

PUZ have most of the o
rasterization algorithms
implemented in | Rasteroperaicn

¢

Frame buffer

NN

3




] Scan converting lines

Nents
1 sThe chosen pixels should lie as close to the ideal line
as possible.

[1/*The sequence of pixels should be as straight as possible.

All lines should appear to be of constant brightness.
Independent of their length and orientation.

hopld start and end accurately.



Rasterizing a line




Scan Conversion of Line
Segments

One pixel




.--L
——

at is

1. Aline in Computer graphics is a portion of straight
line that extends indefinitely in opposite direction.

2. It is defined by its two end points.

3. Its density should be independent of line length.
the slope intercept equation fora line:

y=mx+b (1)
where, m = Slope of the line
b = they intercept of a line



“The two endpoints of a line segment are specified at
positions (x1,y1) and (x2,y2).

Vo,

P2(x2,y2)

-~
el
=




We can determine the value for slope m & b intercept
as

m = y2-y1/x2-Xx1

i.e. m=Ay/ Ax (2)




LINE EQUATION

d pointsof line segmentsare (x1,yl) and (x2,y2), the
n be represented as

Y=mX+b

Where m slope is

n= 02z2yDH _ Ay
(x2—x1) Ax

,assume0<m<1

/
/

n xinterval Ax along a line, calculate the
orresponding Ay

Ay~=m *Ax ,forslope |m| <1

larly for a given y interval Ay along a line , corresponding Ax
AXEAy/m fordope |m| >1



Example 1 The endpoints of line are(0,0) & (6,18).
Compute each value of y as x steps from o to 6 and
plot the result.

Solution : Equation of line isy= mx +b
m =y2-y1/x2-x1= 18-0/6-0 = 3

Next they intercept b is found by plugging y1& x1 into
the equationy = 3x + b,

0 = 3(0) + b. Therefore, b=0, so the equation for the
line isy= 3x.




The challenge is to find a way to calculate the next x,y
position by previous one as quickly as possible.




Scan Conversion algorithm for Line segment

rithms are

1. DDA (Digital Differential Analyzer)
2. Bresenham’s Algorithm

—

DDA/was a electro mechanical device
for/digital simulation of differential

equations. -
ay )

ere' m' isthe slope.



Scan Conversion of Line Segments

[ Start with line segment in window
- coordinates with integer values for
endpoints

| Assume implementation has a
write pixel function




Slope Conditions for Algorithms

* LLAy/Ax>1 when0>43 1 / /

*2Ay/Ax<lwhenO<45 | 7

* 3. Ay/Ax=1when0=45 2 /




DDA Algorithm

The Digital differential analyzer (DDA) algorithm is an
incremental scan-conversion method.

Such an approach is characterized by performing
calculations at each step using results from the preceding
step.




DDA Algorithm

[ Slope | m|< 1or | m| =0(horizontal line),
Ay=m AX,
moving from x1 to X2 and xisincrease by
1 for each iteration. And y isincrease by

AY =m.
For (x=x1, x<=x2, x++)

y += m;
/note:m is float number
write pixel (x,round(y),line color);




For Horizontal line

yine=0/7=0

XLy)(x2y2)
2,2) (9.2) X | v
A x=9-2=7 2l .
Ay=2-2=0 -
m=Ay/Ax=0/7=0 |5 | >
xinc=7/7=1 : :

ik

9 2

- PO O &S O OO 4 OO O

123456783910




For Horizontal line

yine=0/7=0

(xLyl)(x2,y2)

(2,2) (9,2) Xy

A x=9-2=7 2l .

A y=2-2=0 1

m=Ay/Ax=0/7=0 |5 |2

xinc=7/7=1 “ :
s
9 2

- PO O S O OO 1 OO ©O

12345678910




Using Symmetry

[Useforl1>m=>0
[JForm >1,swap roleof xand y
[ For each y, plot closest x

f




DDA Algorithm

] Slope |m|>1
Ax=Ay/m,
moving from yl to y2 and y isincrease by
1 for each iteration. And X isincrease by

Ax =1/m.
For (y=yl; y<=y2, y++)

X += 1/m;
//note:m is float number
write pixel (round(x),y,line color);

}




For Vertical line

(x1,y1)(x2,y2)
(2,3) (2.8)

A x=2-2=0

A y=8-2=6

m= A y/ A x=6/0=w
xinc=0/6=0
yinc=6/6=1

t= |12 |12 2| o = |
‘.

=
- PO O &S O OO 4 OO O

123456783910




For Vertical line

(xLyl)(x2,y2)
(2,3) (2,8)

A x=2-2=0

A y=8-2=6

m=Ay/ A x=6/0=w
xinc=0/6=0
yine=6/6=1

=2 |12 a2 2 |12 = |
‘.

(=
- PO O &S O OO 4 OO ©O

12345678910




For any Diagonal line

(x1,y1)(x2,y2)
(12) (99) X | ¥
A x=9-1=8 EILE g
) 237=2
By=5-2=3 T T |8
m=Ay/ A x=3/8=0.37 % Tz g
xinc=8/8=1 Bl ) B
yine=3/8=0.37 1 pE
: 2 L~
§ | 4.39=5 3
2
9 | 496=5 1

123456783910



For any Diagnal line

(x1,y1)(x2,y2)

(12) (99) X | ¥

A x=9-1=8 A

A y=5-<3 !

m=Ay/ A x=3/8=0.37 % Tz g

xinc=8/8=1 2| e

yine=3/8=0.37 1
§ | 4.39=5 g
9 | 49625 1'

123456783910




When X1 >X2or Y1 >Y2




DDA Algorithm

1 Slope lessthan or equal to -1 ( negative )

Ay=m Ax moving from x2 to x1 and xis
decrease by 1 for each iteration. And y is
decrease by Ay =m.

For (x=x2, x<=x1, x--)

y += m;
/note:m is float number
write pixel (x,round(y),line color);




DDA Algorithm

[ Slope m >-1
Ax= Ay/m , where y1>y2

moving from y2 to yl and yisdecrease
by 1 for each iteration. And xisdecrease
by Ax=1/m.

For (y=y2; y<=yl, y--)

{

X += 1/m;
//note:m is float number
write pixel (round(x),y,line color);

}




dx-=x2-X1;
dy=y2y1;
If(abs(dx) > abs(dy))

Steps=abs(dx);
else

Steps=abs(dy);
xinc=dx/steps;
yinc=dy/steps;
For(l-1, i<=step, i+4)
{
putpixel(x,y1);
X1=X14XINC;
yi=y1+ying;

DDA Algorithm



Algorithm:

(x1,y1) (x2,y2) are the end points and dx, dy are
the float variables.

Where dx= abs(x2-x1) and dy= abs(y2-y1)
(i) Ifdx>=dythen
length = dx
else
length = dy
endif




e (1) Xinc = (XZ-XI)/ length
Yinc= (y2-y1)/length

(iii) i=o
(v) Plot((x), (y))
(v) x=x+Xinc
y =Y + Yinc
(vi) 1=1+1
(vii) Ifi <length then go tostep (iv)
(vii) Stop




Example1: Scanconverta line having end points (3,2) &
(4,7) using DDA.

Solution: dx=x2-x1=4-3=1

dy=y2-y1=7-2=5
As, dx < dythen

length =y2-y1 =5

Xinc = (x2-x1)/ length = 1/5 =0.2
Yinc = (y2-y1)/ length = 5/5 =1




setpixel

(3.2)

(3,3)

(3:4)

(4,5)

(4.6)

(4.7)




Example 2: Scan converta line having end points (0,0) &
(5,10) using DDA.

X1=0,y1=0 & X2=5,y2=10
Solution: dx=x2-x1=5-0=5
dy=y2 -y1=10-0 =10
As, dx < dythen
length =y2-y1=10

Xinc = (x2-x1)/ length = 5/10 =0.5

Yinc = (y2-y1)/ length = 10/10 = 1




@OO\ICDU'I-POONHO‘
Oolo|~N|loluonlwiNviR|O

=
o




Example3: Scanconverta line having end points (0,0) &
(5,5) using DDA.

X1=0,y1=0 & X2=5,y2=5
Solution: dx=x2-x1=5-0=5
dy=y2-y1=5-0=5
As, dx < dythen
length = x2-x1 =5

Xinc = (x2-x1)/ length = 5/5 =1
Yinc = (y2-y1)/ length = 5/5 =1




x1

X2

Xinc

Yinc

setpixel

(0,0)

(1,1)

(2,2)

(3.3)

(4,4)

o) | WO| N| | O

O1 I~ L N = o <

GRS NS E I SE

(5,5)







Advantages and Disadvantages of DDA

» Advantages :
1.  Simplest line drawing algorithm
2. No special skills required for its implementation

3. DDA draws the line faster than drawing the line by directly using the
line equation.

» Disadvantages :
1. It dependents on orientation which makes the end point accuracy
poor.
2. It requires floating point addition to determine each successive point
which is time consuming.

3. Error due to limited precision in floating point representation may
cause calculated points to shift away from their actual position when
the line is relatively long.



Limitations of DDA:

(1) The rounding operation & floating point
arithmetic are time consuming procedures.

(2) Round-oft error can cause the calculated pixel
position to drift away from the true line path for

long line segment.




DDA Example

- Suppose we want to
draw a line starting at
pixel (2,3) and ending
at pixel (12,8).

- What are the values of
the variables x and y at
each timestep?

- What are the pixels
colored, according to
the DDA algorithm?

numsteps=12-2=10

xinc=1010=1.0

yinc = 5/10 = 0.5

t X y R(x) Rly)
0 2 3 2 3
1 3 3.5 3 4
2 4 4 4 4
3 5 4.5 5 5
4 6 5 6 5
5 7 5.5 7 6
6 8 6 8 6
7 9 6.5 9 7
8 10 7 10 7
9 1 7.5 1 8
10 12 8 12 8




Bresenham’s Line Algorithm

DDA algorithm has a disadvantage, that is, the round
off error. This error happens because the algorithm
rounds off the actual floating point line values to
integer values (for example, if actual value of a point of
line is 12.34, the DDA algorithm rounds it to 12 and if
the value is 12.62, it will round it to 13). This causes the
calculated pixel positions to move away from the
actual line path for long lines.

* For this reason we use another accurate and efficient
line drawing algorithm called Bresenham’s algorithm
because it was developed by Bresenham.

 This algorithm draws line by using only integer
calculations.



®The Bresenham algorithm is another incremental scan
conversion algorithm.

®Developed by Jack Bresenham.

®The big advantage of thisalgorithm is that it uses only
integer calculations.

® Accurate and efficient than DDA.




|

}
13 Specified

Linogmh/w
12

n

10

vy

e

0

"

12

13

* Horizontal axis shows the pixel

columns

Vertical axis shows the line position.
If we take unit x-intervals and we
plot a point at (x,,y,), then in order
to calculate the y values we need to
check which of the two points is
closer to the line path at each
sample step. That is, we need to
decide at the next sample position
X,1 Whether to choose the pixel
(Xee1,Yi) OF (X1, Yieq), that is, whether
to choose point (11,11) or (11,12)
for the next step.



These issues are solved by Bresenham’s
algorithm.

It decides which value to take at next position
whether (X1, Vi) OF (X1, Yieq)- It does this by
checking the sign of a decision parameter (p,)
which is equal to the difference between the
separations of the two pixel positions (y, and y,,,)
from the actual line path.

If p, is negative it takes the point as (x,,4, V,)-
If p, is positive it takes point as (X,,;, Yi.1)



Phe Big |dea

Move across the X axis in unit intervals and at each step
choose between two different y coordinates

I For_e_xample, from
5(xk+1,\y/k+1) v % position (2, 3) we have
48 A to choose between (3,

(X V) 3) and (3, 4)
= SRR P~ Wewould like the
0% | A point that is closer to

the original line




DERIVATION

-Starting from the left endpoint (x0, y0) of a
given line, we step to each successive
column (x position) and plot the pixel whose
scan-line y value is closest to the line path.

At sample positions Xk+ 1 the vertical
separations from the line are labelled

dupper and djower y coordinate on the line |
at xx+ 1is, X +1

y=m(Xk+1)+b

So
dlower=Y-Yk = m(Xk+1)+b-Yk
dupper= (Yk+1)-Y = Yk+1-m(Xk+1)-b



DERIVATION

* It can be used to make decision about which pixel is closer to the line

* This decision is based on the difference between the two pixel positions,
dypper = diower = Zm(x, +1) =2y, +2b -1

* By substituting m = Ay/Ax and both are differences of end points,
Ay
Ax(dupper = dlower) = Ax (2 (E) (X +1) -2y +2b- 1)

= 28y. x;, — 2Ax. y, + 28y + Ax(2b - 1)
= 28y.x, — 2Ax. y, +C



DERIVATION

* Now, a decision parameter P, for the kth step along a line,

P = Ax(dypper = diower)
= 28y.x, = 20x.y, +C

* The sign of Py is same as that of d,yper — Qjower

* If P, is ~ve then we choose the lower pixel i.e. y;. only, otherwise we choose the upper
pixeli.e.y, +1

* So, for P, + 1atstepk +1,
Preq = 28Y. Xzq = 28X, Yy41 +C

* Subtracting Py,
Prar = P = 28y (xp41 — ) = 28x(Ypes1 — i) +C



DERIVATION

* Xp4q ISSame as xy + 1 so,
Pesr = P + 28y = 28 (Yes1 — Vi)

* Here, Vi+1 — Vi is either 0 or 1depending on the sign of P,

* If B, < 0, the next point to plot is {x;, + 1, y;) and new value of P is,
Pk+1 - Pk + ZA}’

* If P, > 0, the next point to plot is {x; + 1, y, + 1) and new value of P is,

* The first decision parameter P, is evaluated at (X, ;) is,
Po = 2Ay - Ax



P

BRESENHAM’S LINE DRAWING ALGORITHM

Input the two line end-points, storing the left end-point in (X4, ;)

Calculate the constants Ax I.e. dX, Ay I.e.dy, 2Ay and 2 Ax, get
the first value for the decision parameter as:

Initialize starting

Initialize 1=1 as a counter,
If Pk<O0, next point to plot is (Xx,+1, y,) and




If Pk>0, the next point to plot is (x,+1, y,+1) and:

5.  Repeat step 4 (Ax —1) times

The algorithm and derivation above assumes slopes are
less than 1. for other slopes we need to adjust the
algorithm slightly.




* Adjustment

For m>1, we will find whether we will increment x while
incrementingy each time.

After solving, the equation for decision parameter p, will
be very similar, just the x and y in the equation will get
interchanged.




ing Bresenham'’s algorithm, generate the coordinates of the
pixels that lie on a line segment having the endpoints (2, 3) and
(5, 8).

Case: When slope (m) > 1
Now let’s solve the same numerical using BLAAIgorithm.

S-1. x1=2; y1=3; X2=5; y2=8.

S-2: dy=y2-yl=8-3=5 and dx=x2-x1=5-2=3
dy-dx=5-3=2; and 2*dy=10;

m(slope) = dy/dx => 5/3

Slope is more than 1 so we will follow the following method.



S-3. Calculate d=2*dx-dy, so d=2*3-5=1.

S-4: Always remember the rule for any line algorithm, If m is
less than 1 then always increment x and calculate y. If m is
more than 1 then do opposite, which is, always increment y
and calculate x.

In this case, we will increase y by 1 every step as m (Slope) is
more than 1 and calculate y as follows.

a) Ifd >=0 then x1=x1+1
andyl =yl +1 with newd =d +
2*(dx-dy)

b) If d<O then x1 = x1 (remains
same) and 1=y1+1 with new d =d + 2*dx




Note: y is always increasing ->Why?, its because for m>1, always
Increase y

d=2%dx-dy=1

From step 4 (a) d =1+ 2*( 3-5) = -3
From step 4 (b) d =-3+ 2* 3=3
From step 4 (a) d=3+ 2*(3-5)=-1
Fromstep4 (b)d=-1+2*3=5

From step 4 (a)d =5+ 2*3-5)=1

Cant increase x as x has reached final Cant increase y as y
has reached final So algo will stop here.




P SN

Example 2:

Draw a line from (1,1) to (8,7) using Bresenham'’s Line Algorithm.

Case - When Slope (m) <1
Now let’s solve the same numerical using BLAAIlgorithm.

S-1: x1=1; yl=1; and x2=8; y2=7.
S-2: dy=7-1 = 6 and dx=8-1=7

dy-dx =6-7 =-1;and 2 * dy = 12;

S-3: Calculate d = 2*dy-dx, so
d=2*6 — 7 = 5 (Note the change here for m<1)



S-4: We will increase x by 1 every step as m s less than 1 and
calculate y as follows

Rule: If slope (m) is less than 1 (m<1) then always increase x and
calculate .

a) Ifd>=0 then x1=x1+1 and yl=yl+1
with new d = d + 2*(dy-dx)

b) If d<O then x1=x1+1 and ylwillnotchange
with new d = d + 2*dy

B



d=2*dy—-dx=5

From step 4 (a) d =5 + 2*(6-7)=3

Fromstep 4 (a) d =3 +2*(6-7) =1

Fromstep4 (a)d =1+ 2%6-7) =-1

Fromstep4 (b)d=-1+2* =11

Fromstep 4 (a) d =11 +2(6-7)=9

d=9+2*(6-7)=7

Algorithm will stop here after plotting final
pixel(8,7).

2,2

4,4

54



Bresenham Example

Let’s havea go at this
Let’s plot the line from (20, 10) to (30, 18)
First off calculateall of the constants:

® AX:10

OAy:8
®2AY:16
O2AY - 2AX: -4
Calculate the initial decision parameter Pg:

op0 = 2Ay —AX =6




EXAMPLE

* End points (20,10) and (30,18
* Ar=x2-x1=30-20=10
* Ay=y2-y1=18-10 =8
+ m= Ay/Ax=8/10=08

k Py What Yisa) k P Whsn Yist)
0 6>0 (21,11) 5 6=0 (26,15)
1 2>0 (22,12) b 2>0 (27,16)
2 -2<0 (23,12) 7 -2<0 (28,16)
3 14>0 (24,13) 8 14>0 (29,17)
4 10>0 (25,14) 9 10>0 (30,18)




Example (cont.)

CH 3-P1-62



EXAMPLE




ADVANTAGES

*Uses fixed points

*Easy to calculate (only addition & subtraction)

*Fast execution compare to DDA

*More accurate and efficient




DISADVANTAGES

* Drift away from actual line path

* Causes stair-case pattern




Bresenham Line Algorithm Summary

The Bresenham line algorithm has the following
advantages:

® An fast incremental algorithm

® Uses only integer calculations

Comparing this to the DDA algorithm, DDA has the
following problems:

® Accumulation of round-off errors can make the
pixelated line drift away from what was intended

® The rounding operations and floating point arithmetic
involved are time consuming




LT UJCLVYV =

Bresenham's Line Algorithm:

\.—-,

A'..-.

5\77

DDA Algorithm

1. DDA Algorithm use floating
point, I.e., Real Arithmetic.

2. DDA Algorithms uses
multiplication & division its
operation

Bresenham's Line
Algorithm

1. Bresenham's Line Algorithm use
fixed point, 1.e., Integer Arithmetic

2.Bresenham's Line Algorithm uses
only subtraction and addition its
operation



DDA Algorithm

4. DDA Algorithm is not accurate
and efficient as Bresenham's Line
Algorithm.

5.DDA Algorithm can draw circle
and curves but are not accurate as
Bresenham's Line Algorithm

Bresenham's Line
Algorithm

4. Bresenham's Line Algorithm is
more accurate and efficient at DDA
Algorithm.

5. Bresenham's Line Algorithm can
draw circle and curves with more
accurate than DDA Algorithm.



r

s

« Whatis a circle?

 Itis a set of points that are all at a given distance r
from center position (X, Y.)-

* The distance relationship equation of a circle is
expressed by the Pythagorean theorem in Cartesian
coordinates as:

(X=X )2+ (Y =Y =12




* We can re-write the circle equation as:

y:yci(rz—(X—XC)2)0-5

By substitution with x , X, and y. we can get y.

« Two problems with this approach:
— It Involves considerable computation at each step.

— The spacing between plotted pixel positions is not
uniform, as demonstrated below







« Polar coordinates (r and 0) are used to eliminate the
unequal spacing shown above.

» Expressing the circle equation in parametric polar
form yields the pair of equations

— X=X,*+rcoso
— y=y.+rsino




\

When a circle is generated withrthese equations using
a fixed angular step size, a circle Is plotted with
equally spaced points along the circumference.

The step size chosen 6 depends on the application
and the display device.

Computation can be reduced by considering the
symmetry of circles. The shape of the circle is similar
In each quadrant.

« We can take this one step further and note that there
IS also symmetry between octants.






We effectively make use of this 8 fold symmetry to
generate a circle.

« We have (X, + X, VY. +Y), the other points are:

—(XC-X,yC+y)
—(XC+X,yC-y)
—(XC-X,yC-y)

_(Xc+y’yc+x)
_(Xc'y’yc'l'x)
_(Xc+y’yc'x)
_(Xc'y’yc'x)




/M-.v OLLIL CITCTrESciighl Ll N _

* A method for direct distance comparison is to test the
halfway position between two pixels to determine Iif
this midpoint is inside or outside the circle boundary.

« This method is more easily applied to other conics,
and for an integer circle radius.

« we sample at unit intervals and determine the closest
pixel position to the specified circle path at each step.




E__ Q_g-.l-!g!l!m . h--h--»_ J1

e

* For a given radius r and screen center position (X, Y.),
we can first set up our algorithm to calculate pixel
positions around a circle path centered at the
coordinate origin ( 0, 0).

« Then each calculated position (x, y) is moved to its
proper screen position by adding x. to x and y. to .

* Along the circle section from x = 0 to x = y In the first
guadrant, the slope of the curve varies from O to - 1.



Therefore, we can take unit steps Iin the positive X
direction over this octant and use a decision
parameter to determine which of the two possible y
positions is closer to the circle path at each step.

Positions In the other seven octants are then obtained
by symmetry.




» To apply the midpoint method. we define a circle
function:

fcircle(X’ y) =Xz + y2 —H

 Any point (X, y) on the boundary of the circle with
radius r satisfies the equation f;,.,.( X,y ) = 0.

* If Tl X, Y ) < 0, the point is inside the circle
boundary ,

If Tl X, ¥ ) > 0, the point Is outside the circle
boundary,

If f...ce( X, Y ) =0, the point is on the circle boundary.




nﬂﬂxmu\\\\

Y

X Xk+l Xk+2




Calculating py

First, set the pixel at (xk , yk ), next

determine whether the pixel
(xk + 1, yk ) or the pixel (xk + 1, yk — 1) Is
closer to the circle using:

P, =fcircle (xk + 1, yk — %2)
= (Xk + 1)2 + (Yk —¥2)2 — 2




\“ :

—

termine whether move E or SE-by-evaliiating-the circle
unction at the midpoint between the two candidate pixel
positions.

pk is the decision variable
if pk <o the midpointis inside the circle

Thus the pixel above the midpoint is closer to the ideal
circle, and we select pixel on scan lineyk. i.e. GoE

If pk >0 the midpoint is outside the circle.

Thus the pixel below the midpoint is closer to the ideal
circle, and we select pixel on scan line yk-1. i.e. Go SE




;

Successive decision parameters are obtained using
Incremental calculations.

->\We obtain a recursive expression for the next decision

parameter by evaluating the circle function at sampling
position xk+1 + 1 = xk + 2:




e

Pisr = Feire (Xeis 1 Vi — 12)
2 _ 1 2 _ g2
i, FDH Y, Lt

Peir = Py T 2(Xk +1)+ (y|§+1 _ yf)_(ykﬂ - Yk)+1

Where yk+1 =yk  if p<0 (move E)
yk+1 =yk-1 if p>0 (move SE)

yk+1 and xk+1 can also be defined recursively



: evaluatlng the C|rcle functlon at the start posmon
(x0,y0) = (0, r):

e po=fcircle (1, r=%) =1+ (r — %)% —r?
or

*Po=5/4-r=1-r

For integer radius r p, can be rounded to p, =1-r
since all increments are integer.




Input radius r and circle center (X, Y. ). set the first
point

X0, Y¥0)=(0,1).

Calculate the initial value of the decision parameter
asp,=1-r.

At each x, position, starting at k = 0, perform the
following test:

Ifp, <0, plot (x, +1,y,)and py,y =Py + 2%, 1 + 1,




Otherwise,

plot (x,+1,y,—-1) and

Pt = P + 2Xpp1 ¥ 1= 2Y,44,

where 2X, ,1=2X,+2 and
2¥ 41 = 2y — 2.




Determine symmetry points on the other seven
octants.

Move each calculated pixel position (x, y) onto the

circular path centered on (X, Y.) and plot the
coordinate values: X =X +X.,y =Yy + V.

Repeat steps 3 though 5 until x > y.

For all points, add the center point (X, Y. )




Now we drew a part from circle, to draw a complete
circle, we must plot the other points.

We have (x; + X, Y. + V), the other points are:
_(Xc'x1yc+y)

—(XC+X,yC'Y)
_(Xc'x1yc'y)
_(Xc+y’yc+x)
_(Xc'y1yc+x)
_(Xc+y’yc'x)
_(Xc'y1yc'x)




A

void draw_pixel(GLint cx, GLint cy)

{ ¢glColor3f(0.5,0.5,0.0);
glBegin(GL_POINTYS);
gl\Vertex2i(cx, cy);

glEnd();
}

volid plotpixels(GLint h, GLint k, GLint x, GLinty)

{

draw_pixel(x+
draw_pixel(x+
draw_pixel(y+
draw_pixel(y+

N, Y+K); draw_pixel(-x+h, y+K);
N, -y+K); draw_pixel(-x+h, -y+Kk);
N, X+K); draw_pixel(-y+h, x+K);

N, -x+K); draw_pixel(-y+h, -x+K);



plotpixels(xc, yc, X, y);
1f(d<0)
d+=2*x+3;
else

{

d+=2*(x-y)+5;
Y

plotpixels(xc, yc, X, Y);




L] = [ ]

iel=pomntT

@

« Given a circle radius r = 10, demonstrate the midpoint
circle algorithm by determining positions along the
circle octant in the first quadrant fromx =0to x = .

Solution:
* pp=1l-r=-9
* Plot the initial point (X,, Y, ) = (0, 10),

* 2%, =0 and 2y, =20.
e Successive decision parameter values and positions

along the circle path are calculated using the midpoint
method as appear in the next table:



t T

]
1010
~

@

(Xk+1’ yk+1) 2 Xk+1 2 yk+1

(1, 10) 2 20

1 (2, 10) 4 20
2 (3, 10) 6 20
3 (4, 9) 8 18
4 (5, 9) 10 18
5 (6,8) 12 16
(7,7) 14 14




I
D]
e
c [ ]

(D)

Y

7

1

'




- BNy P \4 _
o MiE=pC e-atg oA Exetll

« Given a circle radius r = 15, demonstrate the midpoint
circle algorithm by determining positions along the
circle octant in the first quadrant fromx=0to x =.

Solution:
* pp=1l-r=-14

* plot the initial point (X, , ¥,) = (0, 15),
* 2X, =0 and 2y, = 30.

« Successive decision parameter values and positions
along the circle path are calculated using the midpoint
method as:




Py (Xi1s Yier) 2 Xyt1 2 Yy
- 14 (1, 15) 2 30
- 11 (2, 15) 4 30
-6 (3, 15) 6 30

1 (4, 14) 8 28
- 18 (5, 14) 10 28




(Xk+1’ yk+1)

(6,14)

(7,13)

(8,13)

(9,12)

(10,11)

(11,10)




Introduction to OpenGL




Graphics System

Funclion
calls

User Graphics 1/0

Program System Device

Dzifta

B ——————————————————————————————————————————-



What is OpenGL

» OpenGL is a software interface to graphics hardware.

» Graphics rendering API

» Rendering?-converting geometric or mathemati
object descriptions into frame buffer values.

» high-quality color images composed of geometric and imag
primitives

» window system independent

» operating system independent

This interface consists of 150 distinct commands that is used to s
the object and operations needed to produce interactive 2
graphics application.



Graphics Process

Geometric Primitives

Frame
Buffer

Image Primitives



A History of OpenGL

« Was SGl's Iris GL — “Open”GL

“Open” standard allowing for wide range
hardware platforms

OpenGL v1.0 (1992)
OpenGL vi1.1 (1995)
OpenGL v1.4 (latest)

Governed by OpenGL Architecture Review
Board (ARB¥

“Mesa’” — an Open source (http:// www.mesa3d.org)



Per Vertex

Polynomial Operations &

Evaluator Primitive
Assembly

. Per Fragment
mmma RAsterization

Operations

Texture
Memory

Pixel

Operations




Window Management

« OpenGL is window and operating
system independent

 OpenGL does notinclude any functions
for window management, user
iInteraction, and file I/O

« Host environment is responsible for
window management




OpenGL is Not a Language
It is a Graphics Rendering API

Whenever we say that a program is
OpenGL-based or OpenGL applications,
we mean that it is written in some
programming language (such as C/C++)
that makes calls to one or more of
OpenGL libraries



OpenGL Division of Labor

 GL
— “*core” library of OpenGL that 1s platform
mdependent
 GLU

— an auxiliary library that handles a variety of
graphics accessory functions
- GLUT/AUX

— utility toolkits that handle window managements



(The OpenGL Interface)

In OpenGL all graphic functions are stored in three Librarie

1.GL (OpenGL in windows)- The functions in this library have names th
begin with letters gl and are stored in library GL

GLU
K
OpenGL é GL Frame
Application : Buffer
Program GLUT Xlib, Xtk
GLX




(The OpenGL Interface)

In OpenGL all graphic functions are stored in three Libraries

2.GLU (OpenGL Utility Library)- This library uses GL functions and conta
code for generating objects and simplifying views. Function
library begin with “glu”. They are used for

1. Setting up matrices for viewing transformation
2. Rendering surfaces
3. performing polygon tessellation.

.GLUT(OpenGL Utility Toolkit)- Used to interface with the window system
and to get input from external devices.

GLX, Xlib and Xtk are used by x-windows



OpenGL API Hierarchy

| application program
v - v v

OpenGL Motif GLUT

widget or similar

GLX, AGL
or WGL

X, Win32, Mac O/S GL
- il

software and/or hardware




Libraries and Headers

Library Name Library File Header File Note

Utility toolkits glut32_1ib (PC) glut.h window
-lglat (UNIX) glaux.h managements
glaux.lib (PC)
~lglaux (UNIX)

All are presented in the C language



Environment Setup

« All of our discussions will be presented in C/C++
language

- Use GLUT library for window managements
- Files needed

gl.h, glu.h, glut.h
opengl32.lib, glu32.lib, glut32.lib
- Go to htip://www.opengl.org download files

- Follow the Setup instruction to configure proper
path




Usage

Include the necessary header files in your code

#include <GL/gl.h> /f **core”’, the only thing is required
#include <GL/glu.h> // handles accessory functions
#include <GL/glut.h> // handles window managements

void main( int argc, char **argv )
{

Only the “core™ library (opengl32.1ib, gl.h) are required




Graphics System

Function
calls

User

Graphics
System

Program

[kﬁa

...........................................



Graphics Functions

» OpenGL has seven group of functions
1. Primitive functions

2. Attribute functions

3. Viewing functions

4. Transformation functions
5. Input functions

6. Control functions

7. Query functions




1. Primitive functions- Define the low-level object entities s
points, line segments ,polygons, pixels, text and various
of curves and surfaces.

2. Attribute functions- Govern the way that a primitive appears
the display (color, pattern, filling, typeface, text styles etc.,).

3. Viewing functions- API allows us to clip out objects that are too
close or too far away (synthetic camera position and degree of
orientation).

. Transformation functions- APl should provides the user wit
set of transformations functions that allows to carry

transformation of objects such as rotation, scalin
translation.




5.lnput functions- An APl must provide input functions to de
different input devices (key boards, mouse, light pen,
etc.,).

6.Control functions- These functions enable us to communica
with the window system, to initialize our programs, and to dea
with any errors that take place during the execution of our
programs.

.Query functions- A good APl must provide information through a
set of query functions to write device-independent programs
to use various camera parameters and values in the fr
buffer.




GLUT
Windowing toolkit (key, mouse handler, window events)

GLU
« Viewing -perspective/orthographic
e Image scaling, polygon tessellation
e Sphere, cylinders, quadratic surfaces

GL

e Primitives - points, line, polygons
e Shading and Colour

e Translation, rotation, scaling
 Viewing, Clipping, Texture

e Hidden surface removal




OpenGL Function Naming

OpenGL functions all follow a naming convention
that tells you which library the function i1s from,
and how many and what type of arguments that
the function takes

<Library prefix><Root command><Argument count><Argument type>




OpenGL Command Formats

glVertex3fv( v )

Number of Data Type Vecto \
components b - byt(_a omit “v’ Lfor
2 - (x,y) ub - unsigned byte scalar form
3 - ) s - short
4 - (:,y,: w) us - unsigned short 1Vertex2f
IYI ’ i — int g er ex/
ui - unsigned int
f - float

d - double

Reddy

BITS WASE Computer Graphics delivered by Dr. K Satyanaraya 4 August 2021




OpenGL Data Types

To make it easier to convert OpenGL
code from one platform to another,
OpenGL defines its own data types
that map to normal C data types

GLshort AJ10];

short AJ10]:
Gl.double B: | ee—— double B:




Suffix Data Type Typical Corresponding C-Language Type | OpenGL Type
Definition

8-bit integer signed char GLbyte
16-bit integer Short GLshort
32-bit integer int or long GLint
32-bit floating-point Float GLfloat
64-bit floating-point Double GLdouble

ub 8-bit unsigned integer |unsigned char GLubyte,

GLboolean
us 16-bit unsigned integer |unsigned short GLushort
ui 32-bit unsigned integer |unsigned int or unsigned long GLuint, Glbitfield




Control functions

» Interface between the graphics system and operating system
» Interaction with the window system

» Window displays the content of frame buffer
» Position of window are measured in pixels

1. glutlnit(int *argc, char **argv)
» initializes GLUT
» processes any command line arguments.
» should be called before any other GLUT routine.

Eg: glutlnit(&argc, argv)




Control functions

2. glutlnitDisplayMode(unsigned int mode)
» specifies whether to use an RGBA or color-index color model.
» specify whether we want a single- or double-buffered window.

» routine will indicate window is associated with depth, stencil, and
accumulation buffer.

»Eg: window with double buffering, the RGBA color model, and a depth
can be

glutinitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH).
»Eg: Single buffer with RGB

3. glutlnitDisplayMode (GLUT_SINGLE | GLUT_RGB).




» 4.glutlnitWindowPosition (int x, int y)
- Specifies the screen location for the upper-left corner of window.

Eg: glutinitWindowPosition(0,0);
// Place window top left on display

» 5.glutlnitWindowsSize (int width, int size)

- Specifies the size in pixels of the window.

Eg: glutinitWindowSize(500,500); //500x500 window




6. glutCreateWindow (char *string)

» Creates a window with an OpenGL context.

» It returns a unique identifier for the new window.

» Until glutMainLoop() is called , the window is not yet displayed.
Eg: glutCreateWindow(“An Example OpenGL Program”);




>

>

>

>

glutlnit (&argv, argc);

glutlnitWindow5Size(400,300);
glutinitWindowPosition(50,100);
glutCreateWindow(“An Example OpenGL Program”);

Display
Window




7.glutDisplayFunc(void (*func)(void)) -
It is the first and most important event callback function.

Whenever GLUT determines the contents of the window need
redisplayed, the callback function registered by glutDisplayFunc
executed. Therefore, we should put all the routines you need
redraw the scene in the display callback function.

8.glutMainLoop(void)- All windows that have been created are now
shown, and rendering to those windows is now effective. Event
processing begins, and the registered display callback is triggered. Onc
this loop is entered, it is never exited.



OpenGL API
<+ Program Structure

= Step 1: Initialize the interaction between windows
and OpenGL.

= Step 2: Specify the window properties and further

create window.
= Step 3: Set the callback functions
= Step 4: Initialize the program attributes
= Step 5: Start to run the program

11



Program Framework

void myDisplay(){

[* clear the display */
glClear(GL_COLOR_BUFFER_BIT);
glFlush();

}
[* End of GasketDisplay */

void mylinit(){
/* set colors */
glClearColor(1.0, 1.0, 1.0, 0.0);

}
[* End of mylInit/*




Program Framework:

Color Manipulation

o glClearColor():establishes what color the window will
be cleared to.
o glClear(): actually clears the window.

o glColor3f(): establishes what color to use for drawing

objects.
o glFlush(): ensures that the drawing command are
actually executed.

Remark: OpenGL is a state machine.
You put it into various states or modes that remain in effect until
you change them




<+ Program Framework

#include <GL/glut.h> . = includes gl.h

int main (int argc, char** argv)

{

glutInit (&argc,argv) ;
glutInitDisplayMode (GLUT_ SINGLE |GLUT_ RGB) ;
glutInitWindowSize (500,500) ;
glutInitWindowPosition(0,0) ; <
glutCreateWindow("simple") ; define window properties

glutDisplayFunc(myDisplay) ;-
if’!‘x{*]ll_\' '._'u.”xf‘r:'l-;-‘:f.

myInit(}y,— set OpenGlL state

glutMainLoop() ; -




The following is a main program that works for most graphics app

#include <GL/glut.h>
void main(int *argc, char **argv)
{
glutlnit(&argc, argv);
glutinitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutlnitWindow5Size(500,500);
glutlnitWindowPosition(0,0);
glutCreateWindow(“ Sample program”);
glutdisplayFunc(display);
myinit();
glutMainLoop();

}




Primitives and Attributes

< Primitive Classes

= Geometric Primitives
- They are subject to series of geomeiric operations.
- They include points, line segments, curves, efc.

= Raster Primitives

- They are lack of geometric properties
- They may be array of pixels.

: Pipeline

Geoomatr
/ ool R
M Frome
progu)m

A~ P xel operctons l ~— bubfers \

pl l PD' el ne

17



OpenGL Geometric Primitives

> All geometric primitives are specified by vertices

i <G @

GL, POLYGON
GL_LINE STRIP GL LINE LOOP

‘a 0 -

GL_TRIANGLES

‘ GL_QUADS

GL_TRIANGLE_STRIP GL_TRIANGLE_FAN

GL_QUAD_STRIP




GL POINTS —>each vertex is displayed as
pixel

GL_LINES - Takes successive = pair
vertices (lines are disconnected)

GL_LINE STRIP —>Successive vertices a
connected

e

GL LINE LOOP—> polyline are closed.




POLYGON

Polygon is an object that has

1.Border that can be describe by line loop.

2.1t has a well defined interiors.

3 properties of a polygon

Simple: If no two edges of a polygon cross each other it’s a
simple polygon.

[

» simple » not simple




Flat : Any 3 non-colinear determines a plane where that
triangle lies.

Convex:

An object is convex, a line segment between two points on the
boundary never goes outside the polygon.

- L

convex non-convex




-
Primitives and Attributes
<+ Polygon Primitives
= Polygons: GL POLYGON
= Triangles: GL._ TRIANGLES
= Quadrilaterals: GL. QUADS
= Stripes: GL_TRIANGLE_ STRIP
= Fans: GL_TRIANGLE FAN

! Ps3 Ps P- P Ps Ps P P

P2

. , | , . P3
{ W s N i ¥ i ." — > PA

Po P2 Ps Ps Po B P12 P Po

GL_TRIANGLE _STRIP GL_ QUAD STRIP GL TRIANGLE _FAN



Primitives and Attributes

<+ Attributes

= An attribute is any property that determines
how a geomeitric primitive is to be rendered.

= Each geometric primitive has a set of attributes.
« Point: Color
- Line Segments: Color, Thickness, and Pattern
- Polygon: Pattern

----------- P -

o) (t_.')

24



e
Primitives and Attributes

<+ Example: Sphere Approximation

= A set of polygons are used to construct an
approximation to a sphere.
- Longitude
- Latitude

North Pole ||

Equator
A




Specifying Geometric Primitives

» Primitives are specified using
glBegin( primType );
glEnd();

» primType determines how vertices are combined

GLfloat red, green, blue;
Glfloat coords[3];

ngegln( prlmType ) ;

for (1 = 0; 1 < nVerts; ++1i ) {
glColor3f( red, green, blue );
glVertex3fv ( coords ) ;

}
glEnd () ;




glBegin (GL LINES) ; // Specify what to draw,

// here lines

// Geometric info via vertices:
glVertex*(); // 1
glVertex*(); // 2

- //
glEnd() ;
glVertex[234] [isfd]

[234]: 2D, 3D, 4D
[1sfd] : integer, short, float, double

For instance: glVertex2i (100, 25);




Simple Example

void drawRhombus( GLfloat color[] )
{

glBegin( GL_QUADS );
glColor3f(1.0,0.0,0.0);

glVertex2f( 0.0, 0.0 );

glVertex2f( 1.0, 0.0 );

glVertex2f( 1.5, 1.118 );

glVertex2f( 0.5, 1.118 );

glEnd();

}







= Color attribute:

»Additive color- Primary colors (RGB)are add
to give the perceived color.

»Subtractive color (CMY)- colored pigments
remove the color components from light that is
striking the white surface (printing and
painting).

Additive color Subtractive color

Magenta




» Color in Graphics system is handled through t
API.

» There are 2 approaches
»1. RGB Color Model

»2.Indexed Color Model > easier to support in
hardware because of its lower memory
requirement and limited colors available on
display.




RGB color (Tristimulus)

» Each color component is stored separately in the fra
buffer.

» Usually 8 bits per component in buffer (16million
colors).

»In glColoxr3f£ the color values range from 0.0 (none) t
1.0 (all), whereas in glColor3ub the values range fro

0 to 255 =

C
P i
-

ﬁ_-

Frame buffer




»Eg: glColor3f(0.0,0.0,0.0)----black
glColor3f(1.0,1.0,1.0)-----white
glColor3f(1.0,0.0,0.0)------ Red

glClearColor(1.0,1.0,1.0,1.0)- (to clear the window bef
drawing a new frame)

glClearColor(GL_COLOR_BUFFER_BIT);

GL_COLOR_BUFFER_BIT Indicates the buffers currently enabled
for color writing.

Four Color system(RGBA ), A-Alpha [Opacity (Opaque-No lig’\t

passes through) or Transparency value]
» A=0 .0O(Transparent), A=1.0 (Opaque)

> Alpha value will be considered only if Blending
enabled. By default blending is disabled - over
any existing color.




» Indexed color
» Each pixel has 8-bits.

» Divide each pixel’s 8-bit into smaller groups and as
each.

> Not flexible with color assignment.

» Provides wide range of colors.

» Depth pixel are used as index to color lookup table.

52




» Indexed color

» Color is selected from look-up table

»For example : if Frame buffer has K bits/pixe
value or index, is an integer between 0—2k -1

» If precession is m bits, can select 2™ red, 2mblue,
which produces 23m  colors on the display,
buffer can specify on 2K colors.

Color | Red
lockup takble
— P %

Color Green

Color | Blue ﬁ |
Frame buffer lookup table {
N
\;
>

lockup tagle




Eg: glindexi(element)- assign present color to element,
index value is stored in the frame buffer for subseque
operation.

glindexi(196); I o e o

nd
1
1
z
3

» 196 |—> 2081

i

red gun green gun blue gun

00000000 00001000 00100001

LUT allows to set the entries in the color table for each
window by using

glutSetColor(int color, Glfloat red, Glfloat green, Glflo
blue);




» glClearindex(index) specified index is cleared.

» Advantages

The Color index mode requires less memory for the
frame buffer and hardware components.

» Disadvantages

Interaction with window system is more complex
than RGB color.




Colors: RGBAVvs. Color-Index

7~ N\
Color mode

i

717N 7T X\
RGBA mode Color-Index Mode







» Viewin

»Describes how objects appear on the
display.

»Camera forms an image by exposing film,
but computer forms an image by carrying
out a sequence of operations in its pipeline.

»0penGL default view is the orthographic
projection (Image plane is fixed and moving
camera far from this plane)




ORTHOGRAPHIC Projection




OpenGL Camera
OpenGL places a camera at the origin in objec

space pointing in the negative z direction.
The default viewing volume is a box centred at t
origin with sides of length 2

y

(right, top, far)

e

(left, bottormn, near)




i

I
I
Ay X

/ ) '
I/ _ Projection plane




Void glOrtho (GLdouble 1left, Gldouble
Gldouble bottom, Gldouble top, Gldouble
Gldouble far)

« All the parameters are distance measured from the came

 Orthographic projection sees only those objects In
volume specified by the view volume.

* OpenGL uses default view volume 2x2x2 cube with the\orig
In the center. (left, bottom, near)=(-1,-1,-1), (right,
far)=(+1,+1,+1).




gluOrtho2D(GLdouble left, GLdouble right,
GLdouble bottom, GLdouble top)

y
A

|_-Viewing rectangle

X

// z50




Orthographic Viewing

» In the default orthographic view, points are
projected forward along the z axis onto the
plane z=0

(b)



Matrix modes

» OpenGL pipeline architecture depend on multipl
concatenating a number of transformation matri
achieve the desired image or primitive.

» The values of these matrices are part of the state of
system

»In OpenGL Model-view and Projection are two importan
matrices used.

» Initially these matrices are identity matrices.
> The set commands used for two-dimensional vie




glMatrixMode(GL_PROJECTION);
glLoadldentity();

gluOrtho2D(0.0,50.0,0.0,50.0);
glMatrixMode(GL_MODELVIEW);

< This sequence defines 50.0x50.0 viewing rectangle
with the lower left corner of the rectangle at the
origin of the 2-D system

<+ |t then switches the matrix mode back to model-view
mode




OpenGL Geometric Transformations
glMatrixMode(GL_MODELVIEW);

Viewing and |
Projection Coordinates /'/
o 5 |

l Video Monitor
g —

Normalized 1
Coordinates

—




Coordinate Representations
v To generate a picture using a programming package we first nee
the geometric descriptions of the objects that are to be displayed k
coordinates.

VIt coordinate values for a picture are given in some other refe
frame (spherical, hyperbolic, etc.), they must be converted to Carte

coordinates.
Afs 0

v Several different Cartesian reference frames are used in the proc
constructing and displaying.

First we define the shapes of iIndividual objects, such as ftr
rniture, These reference frames are called modeling coordinate
ordinates.



v Then we place the objects into appropriate locations within
reference frame called world coordinates.

v After all parts of a scene have been specified, it is processed th
various output- device reference frames for display. This process Is c
the viewing pipeline.

v/ The scene is then stored in normalized coordinates. Which range fro
—1 to 1 or from 0 to 1 Normalized coordinates are also referred to a
normalized device coordinates.

The coordinate systems for display devices are generally called
oordinates, or screen coordinates.



Figure briefly illustrates the sequence of coordinate
from modeling coordinates to device coordinates

Viewing and
Projection Coordinates
N // i1
Modeling / \ I Video Monitor
Coordinates ' :
/ Normalized | Plotter
World Coordinates
Coordinates

Device

Coordinates




Coordinate System

It Is difficult to specify the vertices in units of the physical
device.

Device-independent graphics makes users easy to define
their own coordinate system.

(x Vo)

-r:nax'. Y mox)
(rqu’.smdx) Render'|n9
Process
(XM g
(x & (rmin' smin)
r(xmin' ymin)

World coordinates Raster coordinates



Coordinate Systems
The units In points are determined by the applicati

are called

— object (or model) coordinates model view tran
— world coordinates

Viewing specifications usually are also in object coordi
transformed through

-- eye (or camera) coordinates

--clip coordinates projection transfor

--normalized device coordinates
--window (or screen) coordinates

penGL also uses some internal representations that usuall
sible to the application but are important in the shades




Coordinate Systems and Transformations

» Steps in Forming an Image
»specify geometry (world coordinates)
»specify camera (camera coordinates)
»project (window coordinates)
»map to viewport (screen coordinates)

» Each step uses transformations

Every transformation is equivalent to a change i
coordinate systems (frames)




L.

» I

Object Space

Model Matrix

View Matrix

Camera Space

Projection
Matrix

*2

Screen Space




Camera Analogy and Transformations

» Viewing transformations

» tripod-define position and orientation of the viewing volume in
the world.

» Modeling transformations
» moving the model.

» Projection transformations
» adjust the lens of the camera.

Viewport transformations
» enlarge or reduce the physical photograph.



Camera Analogy and Transformations

With a Camera With a Computer
MXU vewing
|_{Positioning the Camera ]¥ |_{Viewing Transformation ]¥
mMmlﬁt&Mngmo
madel mudeling
a N X |"
|7 Positioning the Model _‘ ( Modeling Transformation }
\, J =7 \,
~ PO
' T ans projection r ™
Choose a camera lens - Projection Transformation
and adjust zoom
\ S \ J
desermining Shape of viewing volume
photograph viewpart
Mapping to screen g % Viewport Transformation




Camera Analogy

» 3D is just like taking a photograph (lots of
photographs!)

viewing

volume
camera |/
model

tripod




OpenGL Transformations

Vertex Data

»

ModelView

Matrix
Projection
Matrix
Object .
Coordinates Perspce_ctlve
Division
Eye
Coordinates T
Clip
Coordinates
Device

Coordinates

Viewport
Transformation

I

Window
Coordinates




View Ports

*The window manager, not OpenGL, is responsible for opening windo
screen.

By default the viewport is set to the entire pixel rectangle of the window th
opened.

Do not have use the entire window for the image:

*We use the glViewport() command to choose a smaller drawing region.
glViewport(x,y,w,h)

It defines a pixel rectangle in the window into which the final image is map




View Ports

void glViewport(Glint x, Glint y, Glsizei w, Glsizel h)
(x,y)-Lower left corner of view port, w:h is the aspect ratio

By default, the initial viewport values are(0,0,Window W , Window H)

i D
B 2l P |_IL-Viewport
—
>
x 1w | _f{-Graphics window
y 4T
| v

-

Clipping window




» The aspect ratio of a viewport should generally equal the
aspect ratio of the view volume.

» If the aspect ratio of the viewing rectangle, specified by
glOrtho, is not the same as the aspect ratio of the window

specified by glutlnitWindowSize,

» The independence of the object, viewing and workstation
specifications can cause undesirable side effects.

If they differ, the projected image will be distorted as it is
mapped to the viewport.




Text

There are two forms of text:
stroke and raster.

The stroke text is constructed the same way as other graphics primitives.

Computer

Graphics

We use vertices to define line segments or curves that outline each character.



» Advantages of having stroke text are:

» It can be defined to have all the details of any other object,

» It can be manipulated by our standard transformations, and view
like any other graphical primitive.

» A character can be defined once and can be transformed to obtain a
desire size or orientation. \

» Postscript fonts are good examples for this type of text.




Text — cont.

Raster text Is simple and fast. Characters are defined as rectangles of bits called
oIt blocks. A raster character can be placed in the frame buffer rapidly by a bit-
nlock-transfer (bitblt).

If we use bitblt, then we can modify the contents of the frame buffer directly.



The size of characters can be increased by replicating or duplicating pixels.

Due to the fact that raster characters are often stored in the ROM, this may create a
problem with the portability of some of the characters.

glutBitmapCharacter(GLUT _BITMAP 8 BY 13,c)

OpenGL does not have a text primitive, however, GLUT provides a few
bitmap and stroke character sets that are defined in software and are portable. In
the above example, c is the number corresponding to the ASCII characters that we

want to display.



Curved Objects
The primitives In our basic set have all been defined through vertices. With the
exception of the point type. They all either consist of line segments or use line

segments to define the boundary of a region that can be filled with a solid color or a
pattern.

We can take two approaches to create a richer set of objects:
1) Use the primitives that we have to approximate curves and surfaces.
Example: to create a circle simply use a polygon of n sides.

More generally, a curved surface can be approximated by a mesh of  convex
polygons — a tessellation.

2) use the mathematical definitions of curved subjects.

Most graphics systems will provide both options. In OpenGL, we can use the utility
library GLU for a collection of approximations to common curved surfaces. e
also can write our own functions to define new ones.




