

COMPUTER GRAPHICS & VISUALIZATION

(18CS62)

TEXT BOOKS

1. DONALD HEARN AND PAULINE BAKER: Computer
/4thGraphics–Open GL 3rd Edition, Pearson Education,

2004.

2. EDWARD ANGEL: Interactive Computer Graphics A top
5thdown approach with OpenGL edition Pearson

Education 2008.

Module-1 Overview

In this Module we discuss about :

🠶 Basics of computer graphics

🠶 Application

🠶 Display Devices: Random Scan and Raster Scan displays,

🠶 Raster-scan systems

🠶 Input devices,

🠶 Graphics software- OpenGL

🠶 Introduction to OpenGL ,

🠶 Coordinate reference frames,

🠶 OpenGL functions,

🠶 Line drawing algorithms(DDA, Bresenham’s),

🠶 Circle generation algorithms (Bresenham’s).

🠶 What isComputer Graphics

Creation, Manipulation, and Storage of
geometric objects (modelling) and their
images (rendering).

on screens orDisplay those images
output/display devices.

What isComputerGraphics

🠶 Computer Graphics refers to the tools
used to create Pictures

🠶The hardware tools include

🠶 Video monitors

🠶Graphics cards

🠶 Printer

🠶Input devices (mouse, data glove &
trackball)

🠶 What isComputerGraphics

🠶The Software tools are

🠶 Operating System

🠶 Editor

🠶 Complier

🠶 Debugger

Along with these graphics routines are
required to create a picture

eg. Graphics Libraries

Applications of Computer Graphics

1. Graphs and Charts.

2. Entertainment

3. Computer Aided Design

4. Virtual reality environment.

5. Education and Training

6. Computer Animation

7. Data Visualization

8. Image processing

9. Graphical user interface

Video games

Games are very important in
Computer Graphics

16

C17 omputer Aided Design too

Floorplan

Flight simulator Virtual reality

Education and Training

🠶 Graphical flight simulator has proved to increase the
safety and to reduce training expenses.

🠶 The field of virtual reality hasopened many new paths.

for ex.

Stereoscopic vision.

Surgical training.

Astronauts trained in weight less environment.

Video games use standard computer and specialized
hardware boxes.

Computer Graphics isabout
animation (films)23

Major driving force now

Medical Imaging isanother driving force
24

S25cientific Visualisation

To view below and

above our visual range

http://www.nasm.edu/NASMDOCS/PA/CV/

3D Glasses

3D Display

3D Object

Head-Mounted Displays
(HMDs)

The display and a position
tracker are attached to the
user’s head

Head-Tracked Displays
(HTDs)

Display is stationary, tracker
tracks the user’s head relative
to the display.

Example: CAVE, Workbench,
Stereo monitor

🠶 Graphical User interfaces

Advances in computer graphics made different
types of interfaces.

User can interact with the computer using
windows icons, menus & pointing devices.

Operating system provides user interface

Window system and large-screen interaction

Graphics System

Image formed in frame buffer

Output deviceInput devices

Components of Graphics
System

1. Input devices

2. Framebuffer & Memory

3. Processor

4. Output devices

Input devices

🠶 Locator Devices

🠶 Keyboard

🠶 Scanner

🠶 Images

🠶 Laser

🠶 Cameras

INPUT DEVICES

Locator devices/pointing devices

Data glove

keyboard

scanner
laserrange finder

data tablet

camer
a

Processor

CPU –both normal operation and Graphical
operation.

GPU --Graphical Processing Unit, a special purpose
processor, which use Graphical Primitives (line, circle,
polygon) generated by application programs and
assign values to the pixels in the frame buffer that
represent these entities.

For example, triangle is represented by 3 vertices and
line segmentsconnecting these vertices.

All Graphic system are raster based.

“ The conversion of geometric entities to pixel colours
and locations in the frame buffer is known as
RasterizationorScan Conversion “

Output devices: 2 types

🠶Graphic output without display
🠶Printers, Plotters…..

🠶Graphic output with display
🠶 Cathode Ray Tubes

🠶 Vector (Random)scan Display

🠶Raster scan Display

🠶Flat panel display
🠶Plasma panel

🠶 LCD

🠶 LED

Cathode-ray tube (CRT)Monitors

Primary output device –Video monitors

🠶 Standard design of video monitor:
Cathode-ray tube (CRT)

A cathode ray tube

Metal cathode cylinder

Vertical deflection plate

Horizontal deflection plate

Interior metallic coating

With high +ve voltage

Interior metallic coating

With high +ve voltage of 15000-20000volts

Control Grid

Emitting –ve voltage

🠶 Beam of electrons hit phosphor-coated screen, light emitted by
phosphor.

🠶 The direction of the beam is controlled by two pairs of deflection
plates.

🠶 The output of the computer is converted by DAC, to voltages across
the X and Y deflection plates.

🠶 Light appears on the surface of CRT when sufficient beam of electrons
is directed at phosphor.

🠶 CRT will emit the light for a few milliseconds, in order to get a
steady flicker free image same path must be retraced at high
rate in order to keep phosphor activated.

🠶 The frequency at which a picture is redrawn on the screen is
referred to as the “refresh rate” in current display operate at a
rate up to 50-85 HZ

Frame aspect ratio (FAR) =horizontal/vertical size

4:3TV

HDTV

Page

16:9

8.5:11 ~3/4

🠶 Refreshing techniques:

🠶

🠶

Raster scan display

Random scan display

Raster Scan
The graphics system takes pixel from the frame
buffer and display them as a points on the display
in two different ways.
1. Non interlaced/Progressive displays

The pixels are displayed

row by row or scan-line

by scan-line, at the refresh

rate.

2. Interlaced display

Odd rows and even rows are

refreshed alternately. It is used in

Commercial television.

Scan frame 30 times per second.

Pros and Cons

🠶 Advantages to Raster Displays

🠶 lowercost

🠶 filled regions/shaded images

🠶 Disadvantages to RasterDisplays

🠶 a discrete representation, continuous primitives must
be scan-converted (i.e, fill in the appropriate scan
lines)

🠶 Aliasing or "jaggies" Arises due to sampling error
when converting from a continuous to a discrete
representation

Random Scan/ Calligraphic/ Vector CRT

🠶 Beam can be moved from any position to any other position, by

turning beam on and off.

🠶 Very expensive but very fast because no scan conversion.

Color CRT Monitors

⚫Using a combination of phosphors that emit
different-colored light

⚫Beam-penetration

◦ Used in random-scan monitors

◦ Use red and green phosphors layers

◦ Color depends on the penetrated length of
electrons

⚫Shadow mask

◦ Used in raster-scan systems

◦ Produce wide range of color with RGB color
model

been used with

.Beam Penetration Method:
The Beam-Penetration method has
random-scan monitors.

In this method, the CRT screen is coated with two layers of
phosphor, red and green and the displayed color depends
on how far the electron beam penetrates the phosphor
layers.

This method produces four colors only, red, green, orange
and yellow.

A beam of slow electrons excites the outer red layer only;
hence screen shows red color only.

A beam of high-speed electrons excites the inner green
layer. Thus screen shows a green color.

Advantages:
1. Inexpensive

Disadvantages:
1. Only four colors are possible
2.Quality of pictures is not as good as with another
method.

Shadow-Mask Method:

o Shadow Mask Method is commonly used in Raster-Scan
System because they produce a much wider range of
colours than the beam-penetration method.

o It isused in the majority of color TV setsand monitors.

Construction: A shadow mask CRT has 3 phosphor color
dots at each pixel position.

o One phosphor dot emits:

o Another emits:

o Third emits:

red light

green light

blue light

77

This type of CRThas 3 electron guns, one for each color
dot and a shadow mask grid just behind the phosphor
coated screen.

Shadow mask grid is pierced with small round holes in a
triangular pattern.

Figure shows the delta-delta shadow mask method
commonly used in color CRT system.

Working:

Triad arrangement of red, green, and blue guns.

The deflection system of the CRT operates on all 3
electron beams simultaneously; the 3 electron beams
are deflected and focused as a group onto the shadow
mask, which contains a sequence of holes aligned with
the phosphor-dot patterns.

When the three beams pass through a hole in the
shadow mask, they activate a dotted triangle, which
occurs as a small color spot on the screen.

The phosphor dots in the triangles are organized so that
each electron beam can activate only its
corresponding color dot when it passes through the
shadow mask.

Inline arrangement:

Another configuration for the 3 electron guns is an Inline
arrangement in which the 3 electron guns and the
corresponding red-green-blue color dots on the screen,
are aligned along one scan line rather of in a triangular
pattern.

This inline arrangement of electron guns in easier to
keep in alignment and is commonly used in high-
resolution color CRT's.

Advantage:

1.Realistic image

2.Million different colors to be generated

3.Shadow scenes are possible

Disadvantage:

1.Relatively poor resolution

2.Convergence Problem

3.Relatively expensive compared with the

monochrome CRT.

Flat Panel Display:

The Flat-Panel display refers to a class of video devices that
have reduced volume, weight and power requirement
compare to CRT.

Example: Small T.V. monitor, calculator, pocket video
games, laptop computers, an advertisement board in
elevator.

1. Emissive Display: The emissive displays are devices that
convert electrical energy into light. Examples are
Plasma Panel, thin film electroluminescent display and
LED (Light Emitting Diodes).

2. Non-Emissive Display: The Non-Emissive displays use
optical effects to convert sunlight or light from some other
source into graphics patterns. Examples are LCD (Liquid
Crystal Device).

LED (Light Emitting Diode):

In an LED, a matrix of diodes is organized to form the pixel
positions in the display and picture definition is stored in a
refresh buffer. Data is read from the refresh buffer and
converted to voltage levels that are applied to the diodes
to produce the light pattern in the display.

LCD (Liquid Crystal Display):
Liquid Crystal Displays are the devices that produce a
picture by passing polarized light from the surroundings or
from an internal light source through a liquid-crystal
material that transmits the light.

Liquid crystal display is temperature dependent. It is
between zero to seventy degree Celsius. It is flat and
requires very little power to operate.

LCD uses the liquid-crystal material between two glass
plates; each plate is the right angle to each other between
plates liquid is filled.

One glass plate consists of rows of conductors arranged in
vertical direction.

Another glass plate is consisting of a row of conductors
arranged in horizontal direction.

The pixel position is determined by the intersection of the
vertical & horizontal conductor. This position is an active
part of the screen.

Advantage:
1. Low power consumption.
2. Small Size
3. Low Cost

Disadvantage:
1. LCDs are temperature-dependent (0-70°C)
2.LCDs do not emit light; as a result, the image has
very little contrast.

3.
4.

LCDs have no color capability.
The resolution isnot as good as that of a CRT.

Liquid crystal display is temperature dependent. It is
between zero to seventy degree Celsius. It is flat and
requires very little power to operate.

Types of Frame buffer

🠶 Color buffer
They contain either color-index or RGB color data and may also
contain alpha values.

🠶 Depth buffer
Stores a depth value for each pixel, mainly used for hidden surface
removal, depth is usually measured in terms of distance to the eye,
so pixels with larger depth-buffer values are overwritten by pixels with
smaller values.

🠶 Stencil Buffer
One use for the stencil buffer is to restrict drawing to certain portions
of the screen.

🠶 Accumulation Buffer
The accumulation buffer holds RGBA color data just like the color
buffers do in RGBA mode It's typically used for accumulating a series
of images into a final, composite image.

Raster Scan System

Organization of a simple raster system is shown

in Figure.

➔

Here, the frame buffer can be anywhere in the system

memory, and the video controller accesses the frame

buffer to refresh the screen..

In addition to the video controller, raster systems

employ other processors as coprocessors and

accelerators to implement various graphics

operations.

The figure below shows a commonly used organization for raster

systems.

✓A fixed area of the system memory is reserved for the frame buffer,

and the video controller is given direct access to the frame-buffer

memory.

✓Frame-buffer locations, and the corresponding screen positions, are

referenced in the Cartesian coordinates.

Cartesian reference frame:

screen✓Frame-buffer locations and the corresponding

positions, are referenced in Cartesian coordinates.

✓In an application (user) program, we use the commands

within a graphics software package to set coordinate

positions for displayed objects relative to the origin.

✓The coordinate origin is referenced at the lower-left corner

of a screen display area by the software commands, although

we can typically set the origin at any convenient location for

a particular application.

Working: Figure shows a two-dimensional Cartesian

reference frame with the origin at the lowerleft screen corner.

The screen surface is then represented as the first quadrant of

a two-dimensional system with positive x and y values

increasing from left to right and bottom of the screen to the

top respectively.

Pixel positions are then assigned integer x values that range

from 0 to xmax across the screen, left to right, and integer y

values that vary from 0 to ymax, bottom to top.

Basic Video Controller Refresh Operations

✓ The basic refresh operations of the video controller are diagrammed

Two registers are used to store the coordinate values for the

screen pixels.

Initially, the x register is set to 0 and the y register is set to

the value for the top scan line.

✓The contents of the frame buffer at this pixel position are

then retrieved and used to set the intensity of the CRT beam.

✓Then the x register is incremented by 1, and the process is

repeated for the next pixel on the top scan line.

✓This procedure continues for each pixel along the top scan

line.

✓After the last pixel on the top scan line has been processed,

the x register is reset to 0 and the y register is set to the value

for the next scan line down from the top of the screen.

✓ The procedure is repeated for each successive scan line.

✓After cycling through all pixels along the bottom scan line,

the video controller resets the registers to the first pixel

position on the top scan line and the refresh process starts

over .

a. Speed up pixel position processing of video controller:

✓Since the screen must be refreshed at a rate of at least 60

frames per second, the simple procedure illustrated in above

figure may not be accommodated by RAM chips if the cycle

time is too slow.

✓To speed up pixel processing, video controllers can retrieve

multiple pixel values from the refresh buffer on each pass.

✓When group of pixels has been processed, the next block

of pixel values is retrieved from the frame buffer.

Advantages of video controller:

✓A video controller can be designed to perform a number of

other operations.

✓For various applications, the video controller can retrieve

pixel values from different memory areas on different refresh

cycles.

✓This provides a fast mechanism for generating real-time

animations.

✓Another video-controller task is the transformation of

blocks of pixels, so that screen areas can be enlarged,

reduced, or moved from one location to another during the

refresh cycles.

\

In addition, the video controller often contains a lookup table,

so that pixel values in the frame buffer are used to access the

lookup table. This provides a fast method for changing screen

intensity values.

Finally, some systems are designed to allow the video

controller to mix the framebuffer image with an input image

from a television camera or other input device .

Raster-Scan Display Processor

✓Figure shows one way to organize the components of a

raster system that contains a separate display processor,

sometimes referred to as a graphics controller or a display

coprocessor.

The purpose of the display processor is to free the CPU

from the graphics chores.

✓In addition to the system memory, a separate display-

processor memory area can be provided.

Scan conversion:

✓A major task of the display processor is digitizing a picture

definition given in an application program into a set of pixel

values for storage in the frame buffer.

✓ This digitization process is called scan conversion.

Example 1: displaying a line

➔Graphics commands specifying straight lines and other

geometric objects are scan converted into a set of discrete

points, corresponding to screen pixel positions.

➔ Scan converting a straight-line segment.

Example 2: displaying a character

➔ Characters can be defined with rectangular pixel grids .

➔The array size for character grids can vary from about 5

by 7 to 9 by 12 or more for higher-quality displays.

➔A character grid is displayed by superimposing the

rectangular grid pattern into the frame buffer at a specified

coordinate position.

Using outline:

➔For characters that are defined as outlines, the shapes are

scan-converted into the frame buffer by locating the pixel

positions closest to the outline.

Additional operations of Display processors:

➔Display processors are also designed to perform a number

of additional operations.

➔These functions include generating various line styles

(dashed, dotted, or solid), displaying color areas, and applying

transformations to the objects in a scene.

➔Display processors are typically designed to interface with

interactive input devices, such as a mouse.

Graphics workstations and viewing systems

✓Most graphics monitors today operate as raster-scan

displays, and both CRT and flat panel systems are in

common use.

✓Graphics workstation range from small general-purpose

computer systems to multi monitor facilities, often with ultra

–large viewing screens.

High-definition graphics systems, with resolutions up to

2560 by 2048, are commonly used in medical imaging, air-

traffic control, simulation, and CAD.

Graphics workstations and viewing systems

✓Many high-end graphics workstations also include large

viewing screens, often with specialized features.

Multi-panel display screens are used in a variety of

applications that require “wall-sized” viewing areas. These

systems are designed for presenting graphics displays at

meetings, conferences, conventions, trade shows, retail

stores etc.

✓A multi-panel display can be used to show a large view of

a single scene or several individual images. Each panel in the

system displays one section of the overall picture .

Graphics workstations and viewing systems

✓A large, curved-screen system can be useful for viewing

by a group of people studying a particular graphics

application.

✓A 360 degree paneled viewing system in the NASA

control-tower simulator, which is used for training and for

testing ways to solve air-traffic and runway problems at

airports.

Rasterization

to a desired line on the screen. The general
requirements of lines are

🠶Start and End should be accurate .

🠶All pixels should have constant brightness
along their length.

1

1

🠶 Ra1sterization (scan conversion)

🠶 Scan conversion is combination of
rasterization and generating the picture in the
scanline order.

🠶 Rasterization is a process of determining
which pixels provide the best approximation

Scan Conversion of Line
Segments

1

1

2

One pixel

LINE EQUATION

If the end points of line segments are (x1,y1) and
(x2,y2), the line can be represented as

Y=mX+c

Where m slope is

m=
(𝒚𝟐−𝒚𝟏) = 𝚫𝒚 , assume 0 ≤ 𝑚 ≤ 1
(𝒙𝟐−𝒙𝟏) 𝚫𝒙

For a given x interval Δx along a line, calculate
the corresponding Δy

Δy=m *Δx , for slope |m| <1

Similarly for a given y interval Δy along a line ,
corresponding Δx

Δx =Δy/m for slope |m| >1

Scan Conversion algorithm
for Line segment

🠶 Algorithms are

🠶 1. DDA (Digital Differential Analyzer)

🠶 2. Bresenham’s Algorithm

🠶 DDA was a electro mechanical
device for digital simulation of
differential equations.

𝑑𝑦

𝑑𝑥
=𝑚,

Where ‘ m ‘ is the slope.

Scan Conversion of Line Segments
1

1

5

🠶 Start with line segment in window
coordinates with integer values for
endpoints

🠶 Assume implementation has a
write_pixel function

y =mx +c

m
y

x

DDA Algorithm
1

1

6

🠶 Slope | m|< 1 or | m| =0(horizontal line),

Δy=mΔx ,

moving from x1 to x2 and x is increase by
1 for each iteration. And y is increase by
y =m.
For(x=x1; x<=x2, x++)

{

y += m;

//note:m is float number

write_pixel(x,round(y),line_color);

}

Using Symmetry
1

1

8

🠶 Use for 1 m 0

🠶 For m >1, swap role of x and y

🠶 For each y, plot closest x

DDA Algorithm
1

1

9

🠶 Slope |m|>1

Δx=Δy/m ,

moving from y1 to y2 and y is increase by
1 for each iteration. And x is increase by
Δx=1/m.
For(y=y1; y<=y2, y++)

{

x += 1/m;

//note:m is float number

write_pixel(round(x),y,line_color);

}

When X1 >X2or Y1 >Y2

(X2
y2)

(X1
y1)

DDA Algorithm
1

2

1

🠶 Slope lessthan or equal to -1 (negative)

Δy=mΔxmoving from x2 to x1 and x is
decrease by 1 for each iteration. And y is
decrease by y =m.

For(x=x2; x<=x1, x--)

{

y += m;

//note:m is float number

write_pixel(x,round(y),line_color);

}

DDA Algorithm
1

2

2

🠶 Slope m >-1

Δx=Δy/m , where y1>y2

moving from y2 to y1 and y isdecrease
by 1 for each iteration. And x isdecrease
by Δx=1/m.

For(y=y2; y<=y1, y--)

{

x += 1/m;

//note:m is float number

write_pixel(round(x),y,line_color);

}

Advantages
🠶 Easy to implement, simple & faster method

compared to direct use of Equation.

🠶 Does not involve any floating point
multiplication and no direct use of intercept.

Disadvantages
Involves floating point addition.(round off
error)

Time consuming technique.

Rasterization

1

2

Rasterization

▪The raster display is a matrix of picture elements also

called pixels. Each pixel has a color value assigned.

▪ A frame buffer stores the values for each pixel.

▪The task of displaying a world modelled using primitives

like lines, polygons, filled/patterned areas, etc. can be

carried out in two steps

▪Rasterization is a process of determining which pixels

provide the best approximation to a desired line on the

screen.

▪ Determine the color value to be assigned to each such pixel.

Programmable

GPU Pipeline
GPUs have most of the

rasterization algorithms

implemented in

hardware!

🠶 Scan converting lines

Requirements
🠶 ▪The chosen pixels should lie as close to the ideal line

as possible.

🠶 ▪The sequence of pixels should be as straight as possible.

🠶 All lines should appear to be of constant brightness.

Independent of their length and orientation.

🠶 ▪should start and end accurately.

🠶 ▪should be drawn as rapidly as possible.

🠶 ▪should be possible to draw lines with different width and line

styles.

Rasterizing a line

Scan Conversion of Line
Segments6

One pixel

What is Line?

1. A line in Computer graphics is a portion of straight
line that extends indefinitely in opposite direction.

2. It is defined by its two end points.

3. Its density should be independent of line length.

the slope intercept equation for a line:

(1)y = mx + b

where, m = Slope of the line

b = the y intercept of a line

The two endpoints of a line segment are specified at
positions (x1,y1) and (x2,y2).

x

y

P1(x1,y1)

P2(x2,y2)

b

0

We can determine the value for slope m & b intercept
as

m=y2-y1/x2-x1

i.e. m=Δy/ Δx (2)

LINEEQUATION

If the end pointsof line segmentsare (x1,y1) and (x2,y2), the
line can be represented as

Y=mX+b

Where m slope is

m=
(𝑦2−𝑦1) = Δ𝑦 , assume 0 ≤ 𝑚 ≤ 1
(𝑥2−𝑥1) Δ𝑥

For a given x interval Δx along a line, calculate the
corresponding Δy

Δy=m*Δx , for slope |m| <1

Similarly for a given y interval Δy along a line , corresponding Δx

Δx=Δy/m for slope |m| >1

Example 1 The endpoints of line are(0,0) & (6,18).
Compute each value of y as x steps from 0 to 6 and
plot the result.

Solution : Equation of line is y= mx +b

m = y2-y1/x2-x1= 18-0/6-0 = 3

Next the y intercept b is found by plugging y1& x1 into
the equation y = 3x + b,

0 = 3(0) + b. Therefore, b=0, so the equation for the
line is y= 3x.

The challenge is to find a way to calculate the next x,y
position by previous one as quickly as possible.

Scan Conversion algorithm for Line segment

🠶 Algorithms are

🠶 1.DDA (Digital Differential Analyzer)

🠶 2. Bresenham’s Algorithm

🠶 DDA was a electro mechanical device
for digital simulation of differential
equations.

𝑑𝑦𝑑𝑥
= 𝑚,

Where ‘ m ‘ is the slope.

Scan Conversion of Line Segments
1

4

🠶 Start with line segment in window
coordinates with integer values for
endpoints

🠶 Assume implementation has a
write_pixel function

y =mx +c

m
y

x

DDA Algorithm

The Digital differential analyzer (DDA) algorithm is an
incremental scan-conversion method.

Such an approach is characterized by performing
calculations at each step using results from the preceding
step.

DDA Algorithm1

7

🠶 Slope | m|< 1 or | m| =0(horizontal line),

Δy=mΔx ,

moving from x1 to x2 and x is increase by
1 for each iteration. And y is increase by
y =m.
For(x=x1; x<=x2, x++)

{

y += m;

//note:m is float number

write_pixel(x,round(y),line_color);

}

Using Symmetry

🠶Use for 1 m 0

🠶 For m >1, swap role of x and y

🠶For each y, plot closest x

2

0

DDA Algorithm2

1

🠶 Slope |m|>1

Δx=Δy/m ,

moving from y1 to y2 and y is increase by
1 for each iteration. And x is increase by
Δx=1/m.
For(y=y1; y<=y2, y++)

{

x += 1/m;

//note:m is float number

write_pixel(round(x),y,line_color);

}

When X1 >X2or Y1 >Y2

(X2
y2)

(X1
y1)

DDA Algorithm2

7

🠶 Slope lessthan or equal to -1 (negative)

Δy=mΔxmoving from x2 to x1 and x is
decrease by 1 for each iteration. And y is
decrease by y =m.

For(x=x2; x<=x1, x--)

{

y += m;

//note:m is float number

write_pixel(x,round(y),line_color);

}

DDA Algorithm2

8

🠶 Slope m >-1

Δx= Δy/m , where y1>y2

moving from y2 to y1 and y isdecrease
by 1 for each iteration. And x isdecrease
by Δx=1/m.

For(y=y2; y<=y1, y--)

{

x += 1/m;

//note:m is float number

write_pixel(round(x),y,line_color);

}

Algorithm:

(x1,y1) (x2,y2) are the end points and dx, dy are
the float variables.

Wheredx= abs(x2-x1) and dy= abs(y2-y1)

(i) If dx >=dy then

length = dx

else

length = dy

endif

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

(vii)

Xinc = (x2-x1)/length

Yinc= (y2-y1)/length

i = 0

Plot ((x), (y))

x = x + Xinc

y = y + Yinc

i = i + 1

If i < length then go to step (iv)

Stop

Example 1: Scan convert a line having end points (3,2) &

(4,7) using DDA.

Solution: dx= x2 - x1 = 4-3 = 1

dy= y2 - y1 = 7-2 = 5

As, dx < dy then

length = y2-y1 = 5

Xinc = (x2-x1)/ length = 1/5 =0.2

Yinc = (y2-y1)/ length = 5/5 = 1

x1 y1 x2 y2 L Xinc Yinc i x y setpixel

3 2 4 7 5 0.2 1 0 3 2 (3,2)

1 3.2 3 (3,3)

2 3.4 4 (3,4)

3 3.6 5 (4,5)

4 3.8 6 (4,6)

5 4.0 7 (4,7)

Example 2: Scan convert a line having end points (0,0) &

(5,10) using DDA.

X1=0, y1=0 & x2=5, y2=10

Solution: dx= x2 - x1 = 5-0= 5

dy= y2 - y1 = 10-0 = 10

As, dx < dy then

length = y2-y1 = 10

Xinc = (x2-x1)/ length = 5/10 =0.5

Yinc = (y2-y1)/ length = 10/10 = 1

x1 y1 x2 y2 L Xinc Yinc i x y setpixel

0 0 5 10 10 0.5 1 0 0 0 (0,0)

1 0.5 1 (1,1)

2 1.0 2 (1,2)

3 1.5 3 (2,3)

4 2.0 4 (2,4)

5 2.5 5 (3,5)

6 3.0 6 (3,6)

7 3.5 7 (4,7)

8 4.0 8 (4,8)

9 4.5 9 (5,9)

5.0 10 (5,10)

Example 3: Scan convert a line having end points (0,0) &

(5,5) using DDA.

X1=0, y1=0 & x2=5, y2=5

Solution: dx= x2 - x1 = 5-0= 5

dy= y2 - y1 = 5-0 = 5

As, dx < dy then

length = x2-x1 = 5

Xinc = (x2-x1)/ length = 5/5 = 1

Yinc = (y2-y1)/ length = 5/5 = 1

x1 y1 x2 y2 L Xinc Yinc i x y setpixel

0 0 5 5 5 1 1 0 0 0 (0,0)

1 1 1 (1,1)

2 2 2 (2,2)

3 3 3 (3,3)

4 4 4 (4,4)

5 5 5 (5,5)

Results

Advantages and Disadvantages of DDA
 Advantages :

1. Simplest line drawing algorithm

2. No special skills required for its implementation

3. DDA draws the line faster than drawing the line by directly using the

line equation.

 Disadvantages :

1. It dependents on orientation which makes the end point accuracy

poor.

2. It requires floating point addition to determine each successive point

which is time consuming.

3. Error due to limited precision in floating point representation may

cause calculated points to shift away from their actual position when

the line is relatively long.

Limitations of DDA:

(1) The rounding operation & floating point
arithmetic are time consuming procedures.

(2) Round-off error can cause the calculated pixel
position to drift away from the true line path for
long line segment.

4

1

The Bresenham Line Algorithm

⚫The Bresenham algorithm is another incremental scan
conversion algorithm.

⚫Developed by Jack Bresenham.

⚫The big advantage of this algorithm is that it uses only
integer calculations.

⚫Accurate and efficient than DDA.

The Big Idea
Move across the x axis in unit intervals and at each step
choose between two different y coordinates

2 3 4 5

2

4

3

5

For example, from

position (2, 3) we have

to choose between (3,

3) and (3, 4)

We would like the

point that is closer to

the original line

(xk, yk)

(xk+1, yk)

(xk+1, yk+1)

DERIVATION

•Starting from the left endpoint (x0, y0) of a
given line, we step to each successive
column (x position) and plot the pixel whose
scan-line y value is closest to the line path.

At sample positions Xk+ 1 the vertical
separations from the line are labelled
𝑑𝑢𝑝𝑝𝑒𝑟 and𝑑𝑙𝑜𝑤𝑒𝑟 y coordinate on the line
at 𝑥𝑘 + 1 is,

y= m(Xk+1)+b
So

dlower= Y-Yk = m(Xk+1)+b-Yk
dupper= (Yk+1)-Y = Yk+1-m(Xk+1)-b

𝑑𝑙𝑜𝑤𝑒𝑟

𝑑𝑢𝑝𝑝𝑒𝑟

𝑥𝑘 + 1

𝑦𝑘 + 1

𝑦

𝑦𝑘

BRESENHAM’S LINE DRAWING ALGORITHM

1. Input the two line end-points, storing the left end-point in (x1, y1)

2. Calculate the constants Δx i.e. dx, Δy i.e. dy, 2Δy and 2Δx, get

the first value for the decision parameter as:

P0= 2Δ𝑦− Δ𝑥
3. Initialize starting

4. Initialize i=1 as a counter,

If Pk<0, next point to plot is (xk+1, yk) and

𝑝𝑘+1 = 𝑝𝑘 + 2Δ𝑦

The Bresenham Line Algorithm (cont…)

The algorithm and derivation above assumes slopes are
less than 1. for other slopes we need to adjust the
algorithm slightly.

If Pk>0, the next point to plot is (xk+1, yk+1) and:

5. Repeat step 4 (Δx – 1) times

pk1 pk 2y 2x

Adjustment
For m>1, we will find whetherwe will incrementx while
incrementing y each time.

After solving, the equation for decision parameter pk will
be very similar, just the x and y in the equation will get
interchanged.

Example1:

Using Bresenham’s algorithm, generate the coordinates of the

pixels that lie on a line segment having the endpoints (2, 3) and

(5, 8).

Case: When slope (m) > 1

Now let’s solve the same numerical using BLAAlgorithm.

S-1: x1=2; y1=3; x2=5; y2=8.

S-2: dy=y2-y1= 8-3= 5 and dx = x2-x1 = 5-2 = 3

dy-dx = 5-3 = 2; and 2 * dy = 10;

m(slope) = dy/dx => 5/3

Slope is more than 1 so we will follow the following method.

S-3: Calculate d = 2*dx-dy , so d=2*3 – 5 = 1.

S-4: Always remember the rule for any line algorithm, If m is

less than 1 then always increment x and calculate y. If m is

more than 1 then do opposite , which is, always increment y

and calculate x.

In this case, we will increase y by 1 every step as m (Slope) is
more than 1 and calculate y as follows.

a) If d >=0 then x1 = x1 + 1
and y1 = y1 +1 with new d = d +

2*(dx-dy)

b) If d<0 then x1 = x1 (remains
same) and y1=y1+1 with new d = d + 2*dx

Note: y is always increasing ->Why?, its because for m>1, always

increase y.

Cant increase x as x has reached final Cant increase y as y

has reached final So algo will stop here.

Sl.no X1 Y1 d Pixel Plotted

1 2 3 d = 2*dx – dy = 1 2,3

2 3 4 From step 4 (a) d =1+ 2*(3-5) = -3 3,4

3 3 5 From step 4 (b) d =-3+ 2* 3= 3 3,5

4 4 6 From step 4 (a) d=3+ 2*(3-5)=-1 4,6

5 4 7 From step 4 (b) d = -1 + 2*3 = 5 4,7

6 5 8 From step 4 (a) d = 5+ 2*(3-5) = 1 5,8

ReplyForward

Example 2:

Draw a line from (1,1) to (8,7) using Bresenham’s Line Algorithm.

Case - When Slope (m) <1

Now let’s solve the same numerical using BLAAlgorithm.

S-1: x1=1; y1=1; and x2=8; y2=7.

S-2: dy=7-1 = 6 and dx = 8-1 = 7

dy-dx = 6-7 = -1; and 2 * dy = 12;

S-3: Calculate d = 2*dy-dx , so

d=2*6 – 7 = 5 (Note the change here for m<1)

ReplyForward

S-4: We will increase x by 1 every step as m is less than 1 and

calculate y as follows

Rule: If slope (m) is less than 1 (m<1) then always increase x and

calculate y.

a) If d >=0 then x1 = x1 + 1 and y1 = y1 + 1

with new d = d + 2*(dy-dx)

b) If d<0 then x1 = x1 + 1 and y1 will not change

with new d = d + 2*dy

Sl.no X1 Y1 d Pixel Plotted

1 1 1 d = 2*dy – dx = 5 1,1

2 2 2 From step 4 (a) d = 5 + 2*(6-7)= 3 2,2

3 3 3 From step 4 (a) d = 3 +2*(6-7) = 1 3,3

4 4 4 From step 4 (a) d = 1 + 2*(6-7) = -1 4,4

5 5 4 From step 4 (b) d = -1 + 2*6 = 11 5,4

6 6 5 From step 4 (a) d = 11 +2(6-7) = 9 6,5

7 7 6 d=9+2*(6-7)=7 7,6

8 8 7 Algorithm will stop here after plotting final

pixel(8,7).

8,7

Bresenham Example
Let’s have a go at this

Let’s plot the line from (20, 10) to (30, 18)

First off calculateall of the constants:

⚫Δx: 10

⚫Δy: 8

⚫2Δy: 16

⚫2Δy - 2Δx: -4

Calculate the initial decision parameter p0:

⚫p0 = 2Δy –Δx = 6

CH 3-P1 - 62

Example (cont.)

Bresenham Line Algorithm Summary
The Bresenham line algorithm has the following
advantages:

⚫An fast incremental algorithm

⚫Uses only integer calculations

Comparing this to the DDA algorithm, DDA has the
following problems:

⚫Accumulation of round-off errors can make the
pixelated line drift away from what was intended

⚫The rounding operations and floating point arithmetic
involved are time consuming

DDA Algorithm Bresenham's Line

Algorithm

1. DDA Algorithm use floating

point, i.e., Real Arithmetic.

1. Bresenham's Line Algorithm use

fixed point, i.e., Integer Arithmetic

2. DDA Algorithms uses

multiplication & division its

operation

2.Bresenham's Line Algorithm uses

only subtraction and addition its

operation

3. DDA Algorithm is slowly than

Bresenham's Line Algorithm in line

drawing because it uses real

arithmetic (Floating Point

operation)

3. Bresenham's Algorithm is faster

than DDA Algorithm in line because

it involves only addition &

subtraction in its calculation and uses

only integer arithmetic.

Differentiate between DDA Algorithm and

Bresenham's Line Algorithm:

DDA Algorithm Bresenham's Line

Algorithm
4. DDA Algorithm is not accurate

and efficient as Bresenham's Line

Algorithm.

4. Bresenham's Line Algorithm is

more accurate and efficient at DDA

Algorithm.

5.DDA Algorithm can draw circle

and curves but are not accurate as

Bresenham's Line Algorithm

5. Bresenham's Line Algorithm can

draw circle and curves with more

accurate than DDA Algorithm.

Circle Generating Algorithms

• What is a circle?

• It is a set of points that are all at a given distance r

from center position (xc, yc).

• The distance relationship equation of a circle is

expressed by the Pythagorean theorem in Cartesian

coordinates as:

(x – xc)
2 + (y – yc)

2 = r2

• We can re-write the circle equation as:

y = yc ± (r2 – (x – xc)
2)0.5

• By substitution with x , xc and yc we can get y.

• Two problems with this approach:

– it involves considerable computation at each step.

– The spacing between plotted pixel positions is not

uniform, as demonstrated below

• Polar coordinates (r and) are used to eliminate the

unequal spacing shown above.

• Expressing the circle equation in parametric polar

form yields the pair of equations

– x = xc + r cos

– y = yc + r sin

• When a circle is generated with these equations using
a fixed angular step size, a circle is plotted with
equally spaced points along the circumference.

• The step size chosen depends on the application
and the display device.

• Computation can be reduced by considering the
symmetry of circles. The shape of the circle is similar
in each quadrant.

• We can take this one step further and note that there
is also symmetry between octants.

• We effectively make use of this 8 fold symmetry to

generate a circle.

• We have (xc + x , yc + y), the other points are:

– (xc - x , yc + y)

– (xc + x , yc - y)

– (xc - x , yc - y)

– (xc + y , yc + x)

– (xc - y , yc + x)

– (xc + y , yc - x)

– (xc - y , yc - x)

Mid-point circle algorithm

• A method for direct distance comparison is to test the

halfway position between two pixels to determine if

this midpoint is inside or outside the circle boundary.

• This method is more easily applied to other conics,

and for an integer circle radius.

• we sample at unit intervals and determine the closest

pixel position to the specified circle path at each step.

Mid-point circle algorithm (cont.)

• For a given radius r and screen center position (xc, yc),
we can first set up our algorithm to calculate pixel
positions around a circle path centered at the
coordinate origin (0, 0).

• Then each calculated position (x, y) is moved to its
proper screen position by adding xc to x and yc to y.

• Along the circle section from x = 0 to x = y in the first

quadrant, the slope of the curve varies from 0 to - 1.

Mid-point circle algorithm (cont.)

• Therefore, we can take unit steps in the positive x

direction over this octant and use a decision

parameter to determine which of the two possible y

positions is closer to the circle path at each step.

• Positions in the other seven octants are then obtained

by symmetry.

Mid-point circle algorithm (cont.)

• To apply the midpoint method. we define a circle
function:

fcircle(x, y) = x² + y² – r²

• Any point (x, y) on the boundary of the circle with
radius r satisfies the equation fcircle(x, y) = 0.

< 0, the point is inside the circle• If fcircle(x, y)
boundary ,

If fcircle(x, y) > 0, the point is outside the circle
boundary,

If fcircle(x, y) = 0, the point is on the circle boundary.

Mid-point circle algorithm (cont.)

Calculating pk

First, set the pixel at (xk , yk), next

determine whether the pixel

(xk + 1, yk) or the pixel (xk + 1, yk – 1) is

closer to the circle using:

pk = fcircle (xk + 1, yk – ½)

= (xk + 1)² + (yk – ½)² – r²

Assuming we have just plotted point at (xk,yk) we
determine whether move E or SE by evaluating the circle
function at the midpoint between the two candidate pixel
positions.

pk is the decision variable

if pk <0 the midpoint is inside the circle

Thus the pixel above the midpoint is closer to the ideal
circle, and we select pixel on scan line yk. i.e. Go E

If pk >0 the midpoint is outside the circle.

Thus the pixel below the midpoint is closer to the ideal
circle, and we select pixel on scan line yk-1. i.e. Go SE

Successive decision parameters are obtained using

incremental calculations.

➔We obtain a recursive expression for the next decision

parameter by evaluating the circle function at sampling

position xk+1 + 1 = xk + 2:

kk 1kk 1kkk 1
 y) 1 y 2) (y 1) (y 2 p 2(xp

 1) 1]2 (y 1) 2 r 2

k 1 2
 [(xk

p k 1 Fcirc (xk 1 1, yk 1 1
2)

Calculating Pk +1

Where yk+1 = yk if p<0 (move E)

yk+1 = yk-1 if p>0 (move SE)

yk+1 and xk+1 can also be defined recursively

The initial decision parameter is obtained by

evaluating the circle function at the start position

(x0, y0) = (0, r):

• p0 = fcircle (1, r – ½) = 1 + (r – ½)² – r²

or

• p0 = 5 /4 – r ≅ 1 – r

For integer radius r p0 can be rounded to p0 =1-r

since all increments are integer.

Mid-point Circle Algorithm - Steps

1. Input radius r and circle center (xc, yc). set the first

point

(x0 , y0) = (0, r).

2. Calculate the initial value of the decision parameter

as p0 = 1 – r.

3. At each xk position, starting at k = 0, perform the

following test:

If pk < 0, plot (xk + 1, yk) and pk+1 = pk + 2xk + 1 + 1,

Mid-point Circle Algorithm - Steps

Otherwise,

plot (xk+ 1, yk – 1) and

pk+1 = pk + 2xk+1 + 1 – 2yk+1,

where 2xk + 1 = 2xk + 2 and

2yk + 1 = 2yk – 2.

Mid-point Circle Algorithm - Steps

4. Determine symmetry points on the other seven

octants.

5. Move each calculated pixel position (x, y) onto the

circular path centered on (xc, yc) and plot the

coordinate values: x = x + xc , y = y + yc

6. Repeat steps 3 though 5 until x y.

7. For all points, add the center point (xc, yc)

Mid-point Circle Algorithm - Steps

• Now we drew a part from circle, to draw a complete

circle, we must plot the other points.

• We have (xc + x , yc + y), the other points are:

– (xc - x , yc + y)

– (xc + x , yc - y)

– (xc - x , yc - y)

– (xc + y , yc + x)

– (xc - y , yc + x)

– (xc + y , yc - x)

– (xc - y , yc - x)

Code:

void draw_pixel(GLint cx, GLint cy)

{ glColor3f(0.5,0.5,0.0);

glBegin(GL_POINTS);

glVertex2i(cx, cy);

glEnd();

}

void plotpixels(GLint h, GLint k, GLint x, GLint y)

{

draw_pixel(x+h, y+k); draw_pixel(-x+h, y+k);

draw_pixel(x+h, -y+k); draw_pixel(-x+h, -y+k);

draw_pixel(y+h, x+k); draw_pixel(-y+h, x+k);

draw_pixel(y+h, -x+k); draw_pixel(-y+h, -x+k);

}

void circle_draw(GLint xc, GLint yc, GLint r)

x=0, y=r;{ GLint d=1-r,

while(y>x)

{

plotpixels(xc, yc, x, y);

if(d<0)

d+=2*x+3;

else

{

d+=2*(x-y)+5;

--y;

}

++x;

}

plotpixels(xc, yc, x, y);

}

Mid-point circle algorithm (Example)

• Given a circle radius r = 10, demonstrate the midpoint
circle algorithm by determining positions along the
circle octant in the first quadrant from x = 0 to x = y.

Solution:

• p0 =1 – r = – 9

• Plot the initial point (x0, y0) = (0, 10),

• 2x0 = 0 and 2y0 =20.

• Successive decision parameter values and positions
along the circle path are calculated using the midpoint
method as appear in the next table:

Mid-point circle algorithm (Example)

K Pk (xk+1, yk+1) 2 xk+1 2 yk+1

0 – 9 (1, 10) 2 20

1 – 6 (2, 10) 4 20

2 – 1 (3, 10) 6 20

3 6 (4, 9) 8 18

4 – 3 (5, 9) 10 18

5 8 (6,8) 12 16

6 5 (7,7) 14 14

Mid-point circle algorithm (Example)

Mid-point circle algorithm (Example2)

• Given a circle radius r = 15, demonstrate the midpoint
circle algorithm by determining positions along the
circle octant in the first quadrant from x = 0 to x = y.

Solution:

• p0 = 1 – r = – 14

• plot the initial point (x0 , y0) = (0, 15),

• 2x0 = 0 and 2y0 = 30.

• Successive decision parameter values and positions
along the circle path are calculated using the midpoint
method as:

Mid-point circle algorithm (Example2)

K Pk (xk+1, yk+1) 2 xk+1 2 yk+1

0 – 14 (1, 15) 2 30

1 – 11 (2, 15) 4 30

2 – 6 (3, 15) 6 30

3 1 (4, 14) 8 28

4 – 18 (5, 14) 10 28

Mid-point circle algorithm (Example2)

K Pk (xk+1, yk+1) 2 xk+1 2 yk+1

5 – 7 (6,14) 12 28

6 6 (7,13) 14 26

7 – 5 (8,13) 16 26

8 12 (9,12) 18 24

9 7 (10,11) 20 22

10 6 (11,10) 22 20

Introduction to OpenGL

What is OpenGL

▶ OpenGL is a software interface to graphics hardware.

▶Graphics rendering API

▶Rendering?–converting geometric or mathematical
object descriptions into frame buffer values.
▶high-quality color images composed of geometric and image

primitives

▶window system independent

▶operating system independent

▶ This interface consists of 150 distinct commands that is used to specify
the object and operations needed to produce interactive 2D & 3D
graphics application.

OpenGL Architecture

Display

List

Polynomial

Evaluator

Per Vertex

Operations &

Primitive

Assembly

Rasterization
Per Fragment

Operations

Frame

Buffer

Texture

Memory

Pixel

Operations

(The OpenGL Interface)
In OpenGL all graphic functions are stored in three Libraries

1.GL (OpenGL in windows)- The functions in this library have names that

begin with letters gl and are stored in library GL

OpenGL

Application

Program

GLU

GL

GLUT

GLX

Xlib, Xtk

Frame

Buffer

10

(The OpenGL Interface)

In OpenGL all graphic functions are stored in three Libraries

2.GLU (OpenGL Utility Library)- This library uses GL functions and contains

code for generating objects and simplifying views. Function GLU

library begin with “glu". They are used for

1. Setting up matrices for viewing transformation

2. Rendering surfaces

3. performing polygon tessellation.

3.GLUT(OpenGL Utility Toolkit)- Used to interface with the window system

and to get input from external devices.

 GLX, Xlib and Xtk are used by x-windows 11

Graphics Functions

 OpenGL has seven group of functions

1. Primitive functions

2. Attribute functions

3. Viewing functions

4. Transformation functions

5. Input functions

6. Control functions

7. Query functions

1. Primitive functions- Define the low-level object entities such as
points, line segments ,polygons, pixels, text and various types
of curves and surfaces.

2. Attribute functions- Govern the way that a primitive appears on
the display (color, pattern, filling, typeface, text styles etc.,).

3. Viewing functions- API allows us to clip out objects that are too
close or too far away (synthetic camera position and degree of
orientation).

4. Transformation functions- API should provides the user with a
set of transformations functions that allows to carry out

as rotation, scaling andtransformation of objects such
translation.

5.Input functions- An API must provide input functions to deal with

different input devices (key boards, mouse, light pen, tablets

etc.,).

6.Control functions- These functions enable us to communicate

with the window system, to initialize our programs, and to deal

with any errors that take place during the execution of our

programs.

7.Query functions- A good API must provide information through a

set of query functions to write device-independent programs ,

to use various camera parameters and values in the frame

buffer.

Abstractions
GLUT

Windowing toolkit (key, mouse handler, window events)

GLU
• Viewing –perspective/orthographic

• Image scaling, polygon tessellation

• Sphere, cylinders, quadratic surfaces

GL

• Primitives - points, line, polygons

• Shading and Colour

• Translation, rotation, scaling

• Viewing, Clipping, Texture

• Hidden surface removal

OpenGL Command Formats

22

glVertex3fv(v)

Number of

components

2 - (x,y)

3 - (x,y,z)

4 - (x,y,z,w)

Data Type Vector

omit “v” for

scalar form

glVertex2f(x, y)

4 August 2021BITS WASE Computer Graphics delivered by Dr. K Satyanarayan

b - byte

ub - unsigned byte

s - short

us - unsigned short

i - int

ui - unsigned int

f - float

d
Reddy

- double

Suffix Data Type Typical Corresponding C-Language Type OpenGL Type

Definition

b 8-bit integer signed char GLbyte

s 16-bit integer Short GLshort

i 32-bit integer int or long GLint

f 32-bit floating-point Float GLfloat

d 64-bit floating-point Double GLdouble

ub 8-bit unsigned integer unsigned char GLubyte,

GLboolean

us 16-bit unsigned integer unsigned short GLushort

ui 32-bit unsigned integer unsigned int or unsigned long GLuint, Glbitfield

Data types supported in OpenGL

Control functions

 Interface between the graphics system and operating system (GLUT)

 Interaction with the window system

 Window displays the content of frame buffer

 Position of window are measured in pixels

1. glutInit(int *argc, char **argv)

▶ initializes GLUT

▶ processes any command line arguments.

▶ should be called before any other GLUT routine.

Eg: glutInit(&argc, argv)

25

Control functions

2. glutInitDisplayMode(unsigned int mode)

▶ specifies whether to use an RGBA or color-index color model.

▶ specify whether we want a single- or double-buffered window.

▶ routine will indicate window is associated with depth, stencil, and/or

accumulation buffer.

▶Eg: window with double buffering, the RGBA color model, and a depth buffer,

can be

glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH).

▶Eg: Single buffer with RGB

3. glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB).

26

▶ 4.glutInitWindowPosition (int x, int y)

- Specifies the screen location for the upper-left corner of window.

Eg: glutInitWindowPosition(0,0);

// Place window top left on display

▶ 5.glutInitWindowSize (int width, int size)

- Specifies the size in pixels of the window.

Eg: glutInitWindowSize(500,500); //500x500 window

27

6. glutCreateWindow (char *string)

▶ Creates a window with an OpenGL context.

▶ It returns a unique identifier for the new window.

▶ Until glutMainLoop() is called , the window is not yet displayed.

Eg: glutCreateWindow(“An Example OpenGL Program”);

▶

28

▶ glutInit (&argv, argc);

▶ glutInitWindowSize(400,300);

▶ glutInitWindowPosition(50,100);

▶ glutCreateWindow(“An Example OpenGL Program”);

29

7.glutDisplayFunc(void (*func)(void)) –

It is the first and most important event callback function.

Whenever GLUT determines the contents of the window need to be

redisplayed, the callback function registered by glutDisplayFunc() is

executed. Therefore, we should put all the routines you need to

redraw the scene in the display callback function.

8.glutMainLoop(void)- All windows that have been created are now

shown, and rendering to those windows is now effective. Event

processing begins, and the registered display callback is triggered. Once

this loop is entered, it is never exited.

30

31

32

Program Framework

void myDisplay(){

/* clear the display */

glClear(GL_COLOR_BUFFER_BIT);

glFlush();

}

/* End of GasketDisplay */

void myInit(){

/* set colors */

glClearColor(1.0, 1.0, 1.0, 0.0);

}

/* End of myInit/*

Program Framework:

Color Manipulation

glClearColor():establishes what color the window will

be cleared to.

glClear(): actually clears the window.

glColor3f(): establishes what color to use for drawing

objects.

glFlush(): ensures that the drawing command are

actually executed.

Remark: OpenGL is a state machine.

You put it into various states or modes that remain in effect until

you change them

34

The following is a main program that works for most graphics applications

#include <GL/glut.h>

void main(int *argc, char **argv)

{

glutInit(&argc, argv);

glutInitDisplayMode(GLUT_SINGLE|GLUT_RGB);

glutInitWindowSize(500,500);

glutInitWindowPosition(0,0);

glutCreateWindow(“ Sample program”);

glutdisplayFunc(display);

myinit();

glutMainLoop();

}
35

OpenGL Geometric Primitives

▶ All geometric primitives are specified by vertices

37

GL_POLYGON

GL_QUADS

GL_QUAD_STRIP

GL_TRIANGLE_STRIP GL_TRIANGLE_FAN

GL_POINTS

GL_LINES

GL_LINE_LOOPGL_LINE_STRIP

GL_TRIANGLES

GL_POINTS each vertex is displayed as one
pixel

GL_LINES Takes successive pair of
vertices(lines are disconnected)

GL_LINE_STRIP Successive vertices are
connected

GL_LINE_LOOP polyline are closed.

POLYGON
Polygon is an object that has

1.Border that can be describe by line loop.

2.It has a well defined interiors.

3 properties of a polygon

Simple: If no two edges of a polygon cross each other it’s a

simple polygon.

Flat : Any 3 non-colinear determines a plane where that

triangle lies.

Convex:

An object is convex, a line segment between two points on the
boundary never goes outside the polygon.

convex non-convex

Specifying Geometric Primitives

▶ Primitives are specified using

glBegin(primType);

glEnd();

▶ primType determines how vertices are combined

GLfloat red, green, blue;

Glfloat coords[3];

glBegin(primType);

for (i = 0; i < nVerts; ++i) {
glColor3f(red, green, blue);
glVertex3fv(coords);

}

glEnd();

glBegin(GL_LINES); // Specify what to draw,

// here lines

// Geometric info via vertices:

glVertex*(); // 1

glVertex*(); // 2

... // ...

glEnd();

glVertex[234][isfd]

[234]: 2D, 3D, 4D

[isfd]: integer, short, float, double

For instance: glVertex2i(100, 25);

Simple Example

void drawRhombus(GLfloat color[])

{

glBegin(GL_QUADS);

glColor3f(1.0,0.0,0.0);

glVertex2f(0.0, 0.0);

glVertex2f(1.0, 0.0);

glVertex2f(1.5, 1.118);

glVertex2f(0.5, 1.118);

glEnd();

}

COLOR

 Color attribute:

Additive color- Primary colors (RGB)are added

to give the perceived color.

Subtractive color (CMY)- colored pigments

remove the color components from light that is

striking the white surface (printing and

painting).

▶Color in Graphics system is handled through the

API.

▶There are 2 approaches

▶1. RGB Color Model

▶2.Indexed Color Model easier to support in

hardware because of its lower memory

requirement and limited colors available on

display.

RGB color (Tristimulus)

Each color component is stored separately in the frame

buffer.

Usually 8 bits per component in buffer (16million

colors).

 In glColor3f the color values range from 0.0 (none) to

1.0 (all), whereas in glColor3ub the values range from

0 to 255

50

Eg: glColor3f(0.0,0.0,0.0)----black

glColor3f(1.0,1.0,1.0)-----white

glColor3f(1.0,0.0,0.0)------Red

glClearColor(1.0,1.0,1.0,1.0)- (to clear the window before
drawing a new frame)

glClearColor(GL_COLOR_BUFFER_BIT);

GL_COLOR_BUFFER_BIT Indicates the buffers currently enabled
for color writing.

Four Color system(RGBA), A-Alpha [Opacity (Opaque-No light
passes through) or Transparency value]

A=0 .0(Transparent), A=1.0 (Opaque)

Alpha value will be considered only if Blending is
enabled. By default blending is disabled overwrites
any existing color.

▶ Indexed color

Each pixel has 8-bits.

Divide each pixel’s 8-bit into smaller groups and assign RGB to

each.

Not flexible with color assignment.

Provides wide range of colors.

Depth pixel are used as index to color lookup table.
52

▶Indexed color

Color is selected from look-up table

For example : if Frame buffer has K bits/pixel, each pixel

value or index, is an integer between 0—2k -1

 If precession is m bits, can select 2m red, 2m blue, 2m green,
23mwhich produces colors on the display, but frame

buffer can specify on 2K colors.

53

Eg: glIndexi(element)- assign present color to element, this
index value is stored in the frame buffer for subsequent
operation.

glIndexi(196);

red gun green gun blue gun

GLUT allows to set the entries in the color table for each
window by using

glutSetColor(int color, Glfloat red, Glfloat green, Glfloat
blue);

2081

00000000 00001000 00100001

▶ glClearIndex(index) specified index is cleared.

▶Advantages

The Color index mode requires less memory for the

frame buffer and hardware components.

▶Disadvantages

Interaction with window system is more complex

than RGB color.

Color mode

RGBA mode Color-Index Mode

Colors: RGBA vs. Color-Index

Viewing

▶Viewing

Describes

display.

how objects appear on the

Camera forms an image by exposing film,

but computer forms an image by carrying

out a sequence of operations in its pipeline.

OpenGL default view is the orthographic

projection (Image plane is fixed and moving

camera far from this plane)

ORTHOGRAPHIC Projection

OpenGL Camera
•OpenGL places a camera at the origin in object

space pointing in the negative z direction.

The default viewing volume is a box centred at the

origin with sides of length 2

Void glOrtho(GLdouble left, Gldouble right,

Gldouble bottom, Gldouble top, Gldouble near,

Gldouble far)

• All the parameters are distance measured from the camera.

• Orthographic projection sees only those objects in the

volume specified by the view volume.

• OpenGL uses default view volume 2x2x2 cube with the origin

in the center. (left, bottom, near)=(-1,-1,-1), (right, top,

far)=(+1,+1,+1).

63

gluOrtho2D(GLdouble left, GLdouble right,

GLdouble bottom, GLdouble top)

Orthographic Viewing

▶ In the default orthographic view, points are

projected forward along the z axis onto the

plane z=0

Matrix modes

OpenGL pipeline architecture depend on multiplying or
concatenating a number of transformation matrices to
achieve the desired image or primitive.

The values of these matrices are part of the state of the
system

 In OpenGL Model-view and Projection are two important
matrices used.

 Initially these matrices are identity matrices.

The set commands used for two-dimensional viewing are
65

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

gluOrtho2D(0.0,50.0,0.0,50.0);

glMatrixMode(GL_MODELVIEW);

This sequence defines 50.0x50.0 viewing rectangle

with the lower left corner of the rectangle at the

origin of the 2-D system

 It then switches the matrix mode back to model-view

mode

OpenGL Geometric Transformations

glMatrixMode(GL_MODELVIEW);

Coordinate Representations

✓To generate a picture using a programming package we first need to give

the geometric descriptions of the objects that are to be displayed known as

coordinates.

✓If coordinate values for a picture are given in some other reference

frame (spherical, hyperbolic, etc.), they must be converted to Cartesian

coordinates.

✓Several different Cartesian reference frames are used in the process of

constructing and displaying.

✓First we define the shapes of individual objects, such as trees or

furniture, These reference frames are called modeling coordinates or local

coordinates.
✓

✓Then we place the objects into appropriate locations within a scene

reference frame called world coordinates.

✓After all parts of a scene have been specified, it is processed through

various output- device reference frames for display. This process is called

the viewing pipeline.

✓ The scene is then stored in normalized coordinates. Which range from

−1 to 1 or from 0 to 1 Normalized coordinates are also referred to as

normalized device coordinates.

✓The coordinate systems for display devices are generally called device

coordinates, or screen coordinates.

Figure briefly illustrates the sequence of coordinate transformations

from modeling coordinates to device coordinates for a display

Coordinate System

 It is difficult to specify the vertices in units of the physical

device.

 Device-independent graphics makes users easy to define

their own coordinate system.

Rendering
Process

Coordinate Systems
The units in points are determined by the application and

are called

– object (or model) coordinates

– world coordinates

model view transform

Viewing specifications usually are also in object coordinates
transformed through

-- eye (or camera) coordinates

--clip coordinates

--normalized device coordinates

--window (or screen) coordinates

projection transform

•OpenGL also uses some internal representations that usually are not
visible to the application but are important in the shades

Coordinate Systems and Transformations

▶Steps in Forming an Image

▶specify geometry (world coordinates)

▶specify camera (camera coordinates)

▶project (window coordinates)

▶map to viewport (screen coordinates)

▶Each step uses transformations

▶Every transformation is equivalent to a change in

coordinate systems (frames)

Camera Analogy and Transformations

▶ Viewing transformations

▶ tripod–define position and orientation of the viewing volume in
the world.

▶ Modeling transformations

▶moving the model.

▶ Projection transformations

▶ adjust the lens of the camera.

▶ Viewport transformations

▶enlarge or reduce the physical photograph.

Camera Analogy and Transformations

Positioning the Camera

Positioning the Model

Choose a camera lens
and adjust zoom

Mapping to screen

Viewing Transformation

Modeling Transformation

Projection Transformation

Viewport Transformation

Camera Analogy

▶3D is just like taking a photograph (lots of

photographs!)

camera

tripod
model

viewing
volume

OpenGL Transformations

Vertex Data

ModelView
Matrix

Projection
Matrix

Perspective
Division

Viewport
Transformation

Object

Coordinates

Eye

Coordinates

Clip

Coordinates

Device

Coordinates
Window

Coordinates

79

•The window manager, not OpenGL, is responsible for opening window on the

screen.

•By default the viewport is set to the entire pixel rectangle of the window that is

opened.

•Do not have use the entire window for the image:

•We use the glViewport() command to choose a smaller drawing region.
glViewport(x,y,w,h)

•It defines a pixel rectangle in the window into which the final image is mapped.

View Ports

80

•void glViewport(Glint x, Glint y, Glsizei w, Glsizei h)

(x,y)-Lower left corner of view port, w:h is the aspect ratio

•By default, the initial viewport values are(0,0,Window W , Window H)

View Ports

▶ The aspect ratio of a viewport should generally equal the
aspect ratio of the view volume.

▶ If the aspect ratio of the viewing rectangle, specified by

glOrtho, is not the same as the aspect ratio of the window

specified by glutInitWindowSize.

▶ The independence of the object, viewing and workstation

specifications can cause undesirable side effects.

▶ If they differ, the projected image will be distorted as it is

mapped to the viewport.

Text
There are two forms of text:

stroke and raster.

The stroke text is constructed the same way as other graphics primitives.

We use vertices to define line segments or curves that outline each character.

▶Advantages of having stroke text are:

▶ It can be defined to have all the details of any other object,

▶ It can be manipulated by our standard transformations, and viewed

like any other graphical primitive.

▶ A character can be defined once and can be transformed to obtain a

desire size or orientation.

▶ Postscript fonts are good examples for this type of text.

Text – cont.

Raster text is simple and fast. Characters are defined as rectangles of bits called

bit blocks. A raster character can be placed in the frame buffer rapidly by a bit-

block-transfer (bitblt).

If we use bitblt, then we can modify the contents of the frame buffer directly.

The size of characters can be increased by replicating or duplicating pixels.

Due to the fact that raster characters are often stored in the ROM, this may create a

problem with the portability of some of the characters.

glutBitmapCharacter(GLUT_BITMAP_8_BY_13,c)

OpenGL does not have a text primitive, however, GLUT provides a few

bitmap and stroke character sets that are defined in software and are portable. In

the above example, c is the number corresponding to the ASCII characters that we

want to display.

Curved Objects
The primitives in our basic set have all been defined through vertices. With the

exception of the point type. They all either consist of line segments or use line

segments to define the boundary of a region that can be filled with a solid color or a

pattern.

We can take two approaches to create a richer set of objects:

1) Use the primitives that we have to approximate curves and surfaces.

Example: to create a circle simply use a polygon of n sides.

convexMore generally, a curved surface can be approximated by a mesh of

polygons – a tessellation.

2) use the mathematical definitions of curved subjects.

Most graphics systems will provide both options. In OpenGL, we can use the utility

library GLU for a collection of approximations to common curved surfaces. We

also can write our own functions to define new ones.

